
1/3

January 29, 2008

The history of the Windows XP common controls
devblogs.microsoft.com/oldnewthing/20080129-00

Raymond Chen

In the beginning, there was one control library,
namely USER ,
the window manager itself,

which provided buttons, static controls, edit controls,
scroll bars, list boxes, and combo

boxes.
These controls were under the purview of the window manager team.

In Windows 3.1
a second control library known as the shell common controls was added,
but

the library really didn’t come into it own until Windows 95,
where it consisted
of the list view,

header, tree view, tooltip,
toolbar, status bar, track bar, tab, updown, progress, hotkey,
and

animation controls.
These controls were originally custom controls
written by the shell team

for use in Explorer,
but since they seemed to be generally useful,
time was budgeted to do the

extra work to make the controls more suitable for general use,
testing the controls in

combinations and scenarios
that Explorer itself didn’t use,
and putting together formal

documentation.

The shell common controls library underwent many changes over
the years, whereas the core

intrinsic controls in the window manager
changed much more conservatively.

With Windows XP, the visual design team wanted to give the
look of Windows a new life.

Changing the non-client area (such as the window frame) was comparatively
straightforward,

since programs didn’t have much
control over that part of the window anyway.
As a result,

they get the Windows XP look “for free”.

The client area is another story.
Programs are in control of their client area,
where they can

place controls that come with Windows,
their own custom controls,
or controls obtained

from a third party library.
Making major changes to the core controls or the common

controls
would be a high-risk endeavor
since there are thousands upon thousands of

Windows program that
not only use them,
but use them in all sorts of crazy ways.

The initial stab at resolving these two conflicting goals
(making major changes to these

controls to increase visual appeal
and functionality
while simultaneously not changing them

to maintain compatibility)
was to create a new DLL that would contain the “fancy new

version”
of the core controls as well as the shell common controls.
The old DLLs USER32

and COMCTL32 stayed
where they were, so that old programs continued to get the behavior

https://devblogs.microsoft.com/oldnewthing/20080129-00/?p=23663

2/3

they were expecting,
and the new XP-style controls were placed in a DLL named

UXCTRL.DLL .
UX stands for user experience,
which was the hot new buzzword at the time.

To avoid name collision with the old style controls,
the new controls got new names

beginning with Ux.
For example, the UXCTRL version of the button control
was called

UxButton.

New features could be added to these new Ux controls with wild abandon
without heed for

backward compatibility since they were brand new controls.
There was nothing they had to

be compatible with.
Explorer was changed to use these new controls instead of the old stodgy

controls,
and everything worked great.

Or so it seemed.

We thought we had cleverly sidestepped the backward compatibility problem
by creating

entirely new controls,
but doing that created a whole new category of compatibility bugs.

Even though it’s completely undocumented and unsupported,
programs like to
grovel into

the internal data structures of other programs
or otherwise
manipulate those programs’

windows.
In Explorer’s case, it turns out that a lot of programs like to
go spelunking around

Explorer’s window hierarchy and use functions
like FindWindow and
 EnumChildWindows

to find the object of their affections.
For example, a program might use EnumChildWindows

to
enumerate all the child windows of an Explorer browser,
and then use GetClassName

and lstrcmpi(szClassName, TEXT("button"))
to look for a specific control.
In this

example, the target was a button,
but it could have been a list view or a tool bar.
Since all the

new XP-style controls were named
things like UxButton and UxListView,
these programs

which looked for a button by comparing against
the string "button" stopped working.

Of course, there was no guarantee that Explorer would even use
buttons at all;
Explorer was

completely within its rights to revamp its user interface.
But that’s not much consolation to

the customers who paid good money
for these programs,
especially since magazine

columnists are the types of people most
likely to be running (or indeed even writing!)
strange

off-the-wall programs that pull these
sorts of nasty stunts in the first place.

Okay, so it is now a compatibility requirement that all the new window
classes have the same

names as their old counterparts.
This created an impasse, since these controls needed to be

created
by dialog boxes, and therefore they had to be globally-registered
window classes.
But

you can’t have two global window classes with the same name,
because that would create

ambiguity over which one the caller was
asking for.

More brainstorming ensued, and a Plan C emerged.
The common controls library would take

advantage of
side-by-side assemblies
and use the application manifest to control which
DLL

a given window class name would resolve to.
Thus was born a new DLL also called

http://www.pcmag.com/article2/0,2704,1159395,00.asp
http://msdn2.microsoft.com/en-gb/library/aa375193.aspx

3/3

COMCTL32 ,
but with a new version number—version 6.
Old programs would get version 5.82

just like they did
in Windows 2000.
New programs would have to use a manifest to specify

that they wanted
version 6.

Once again, the solution came with a new problem.
Since the entire COMCTL32 library got

split
into two versions,
this meant that there were two versions of the image list code.
Whole

new scenarios emerged, such as
putting a version 5 image list in a
version 6 tree view, or vice

versa.
(As the linked thread notes illustrates, not all of the problems with
cross-version

scenarios were caught in the initial release and had
to wait for a service pack for the fix to

become available.)

Raymond Chen

Follow

http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=965968
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

