
1/2

January 24, 2008

It's one thing to say "somebody should do this", but
doing it is another matter

devblogs.microsoft.com/oldnewthing/20080124-00

Raymond Chen

A common response when I describe a programming error is,
““Programs should have to

pass a test that includes testing for
this case.”
The case could be a program mishandling a

message,
a program responding incorrectly to IUnknown::QueryInterface ,
whatever.
But

these suggestions fall into the same trap that I see
when grading student essays:
They’re good

with the what but very weak on the how.

Saying “Somebody should do X” is easy,
but without some sort of suggestion as to how that

could be accomplished,
the suggestion rarely gets off the drawing board.
It’s like saying

“Somebody should solve world hunger.”

Let’s look at that first example again.
The topic at hand was window procedures which fail to

pass unhandled messages
to the DefWindowProc function.
How would one “test for this”?

Would the test walk through every code path in the program that
creates a window, and then

send each of those windows a fake
 WM_QUERYENDSESSION or a fake
 WM_APPCOMMAND

message to see what happens?
First of all, it’s unclear how a test could exercise all the

window-creation
code paths of a program without insider knowledge of that program.

Therefore, this test would have to be written by the authors of
the program.

Next, even if you sent the message and saw that the message
was passed to the

DefWindowProc function,
that wouldn’t actually prove that the message was handled

properly.
Maybe the window procedure for a window goes something like this:

...

case WM_QUERYENDSESSION:

if (GetTickCount() / 1000 % 2) return 0;

return DefWindowProc(hwnd, uMsg, wParam, lParam);

Even if you managed to get this window created,
if you send it a fake WM_QUERYENDSESSION ,

you’ll catch the issue only half the time.
It’s not enough just to exercise every window

procedure;
you also have to exercise every code path.

https://devblogs.microsoft.com/oldnewthing/20080124-00/?p=23713
http://blogs.msdn.com/oldnewthing/archive/2006/04/25/583093.aspx#591242
http://blogs.msdn.com/oldnewthing/archive/tags/The+wisdom+of+seventh+graders/default.aspx

2/2

But wait, there’s more.
What if the program really wanted to prevent the user from logging

off?

...

case WM_QUERYENDSESSION:

if (FileHasBeenEditedSinceLastSave()) {

 switch (MessageBox(hwnd,

 TEXT("Save changes before exiting?"),

 TEXT("Title"), MB_YESNOCANCEL)) {

 case IDYES: Save(); break;

 case IDCANCEL: return 0; // user cancelled logoff

 }

}
return DefWindowProc(hwnd, uMsg, wParam, lParam);

In this case, there is a code path that cancels the logoff,
and it is legitimate, since it was done

as the result of
a user decision.
Your test would somehow have to know this and consider
that

case to be a pass and not a failure.
This sort of reasoning is hardly something that a generic

test suite can do; it has to be tailored for each program.

It’s one thing to say that something should be tested,
but without an idea as to how it should

be tested,
the suggestion is much less valuable.
I may as well say,
“Programs should have to

pass a test that verifies that there
are no bugs.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

