
1/3

December 28, 2007

Psychic debugging: The first step in diagnosing a
deadlock is a simple matter of following the money

devblogs.microsoft.com/oldnewthing/20071228-00

Raymond Chen

Somebody asked our team for help
because they believed they hit a deadlock in their

program’s UI.
(It’s unclear why they asked our team,
but I guess since our team uses the

window manager,
and their program uses the window manager, we’re all in the same boat.

You’d think they’d ask the window manager team for help.)

But it turns out that solving the problem required no special
expertise.
In fact, you probably

know enough to solve it, too.

https://devblogs.microsoft.com/oldnewthing/20071228-00/?p=24003

2/3

Here are the interesting threads:

 0 Id: 980.d30 Suspend: 1 Teb: 7ffdf000 Unfrozen

ChildEBP RetAddr

0023dc90 7745dd8c ntdll!KiFastSystemCallRet

0023dc94 774619e0 ntdll!ZwWaitForSingleObject+0xc

0023dcf8 774618fb ntdll!RtlpWaitOnCriticalSection+0x154

0023dd20 00cd03f2 ntdll!RtlEnterCriticalSection+0x152

0023dd38 00cd0635 myapp!LogMsg+0x15

0023dd58 00cd0c6a myapp!LogRawIndirect+0x27

0023fcb8 00cb64a7 myapp!Log+0x62

0023fce8 00cd7598 myapp!SimpleClientConfiguration::Cleanup+0x17

0023fcf8 00cd8ffe myapp!MsgProc+0x1a9

0023fd10 00cda1a9 myapp!Close+0x43

0023fd24 761636d2 myapp!WndProc+0x62

0023fd50 7616330c USER32!InternalCallWinProc+0x23

0023fdc8 76164030 USER32!UserCallWinProcCheckWow+0x14b

0023fe2c 76164088 USER32!DispatchMessageWorker+0x322

0023fe3c 00cda3ba USER32!DispatchMessageW+0xf

0023fe9c 00cd0273 myapp!GuiMain+0xe8

0023feb4 00ccdeca myapp!wWinMain+0x87

0023ff48 7735c6fc myapp!__wmainCRTStartup+0x150

0023ff54 7742e33f kernel32!BaseThreadInitThunk+0xe

0023ff94 00000000 ntdll!_RtlUserThreadStart+0x23

 1 Id: 980.ce8 Suspend: 1 Teb: 7ffdd000 Unfrozen

ChildEBP RetAddr

00f8d550 76162f81 ntdll!KiFastSystemCallRet

00f8d554 76162fc4 USER32!NtUserSetWindowLong+0xc

00f8d578 76162fe5 USER32!_SetWindowLong+0x131

00f8d590 74aa5c2b USER32!SetWindowLongW+0x15

00f8d5a4 74aa5b65 comctl32_74a70000!ClearWindowStyle+0x23

00f8d5cc 74ca568f comctl32_74a70000!CCSetScrollInfo+0x103

00f8d618 76164ea2 uxtheme!ThemeSetScrollInfoProc+0x10e

00f8d660 00cdd913 USER32!SetScrollInfo+0x57

00f8d694 00cdf0a4 myapp!SetScrollRange+0x3b

00f8d6d4 00cdd777 myapp!TextOutputStringColor+0x134

00f8d93c 00cd04c4 myapp!TextLogMsgProc+0x3db

00f8d960 00cd0635 myapp!LogMsg+0xe7

00f8d980 00cd0c6a myapp!LogRawIndirect+0x27

00f8f8e0 00cd6367 myapp!Log+0x62

00f8faf0 7735c6fc myapp!remote_ext::ServerListenerThread+0x45c

00f8fafc 7742e33f kernel32!BaseThreadInitThunk+0xe

00f8fb3c 00000000 ntdll!_RtlUserThreadStart+0x23

The thing about debugging deadlocks is that you usually
don’t need to understand what’s

going on.
The diagnosis is largely mechanical once you get your foot in the door.
(Though

sometimes it’s
hard to get your initial footing.)

Let’s look at thread 0.
It is waiting for a critical section.
The owner of that critical section is

thread 1.
How do I know that?
Well, I could’ve debugged it, or I could’ve used my
psychic

powers to say,
“Gosh, that function is called LogMsg ,
and look there’s another thread that is

http://blogs.msdn.com/oldnewthing/archive/2006/07/10/661389.aspx

3/3

inside the
function LogMsg .
I bet that function is using a critical section to ensure
that only

one thread uses it at a time.”

Okay, so thread 0 is waiting for thread 1.
What is thread 1 doing?
Well, it entered the critical

section back in the
 LogMsg function,
and then it did some text processing and, oh look,
it’s

doing a SetScrollInfo .
The SetScrollInfo went into comctl32
and ultimately

resulted in a SetWindowLong .
The window that the application passed to
 SetScrollInfo

is owned by thread 0.
How do I know that?
Well, I could’ve debugged it, or I could’ve used

my
psychic powers to say,
“Gosh, the change in the scroll info has led to a change
in window

styles, and the thread is trying to notify the
window of the change in style.
The window

clearly belongs to another thread; otherwise we wouldn’t
be stuck in the first place,
and given

that we see only two threads, there isn’t much choice
as to what other thread it could be!”

At this point, I think you see the deadlock.
Thread 0 is waiting for thread 1 to exit the
critical

section,
but thread 1 is waiting for thread 0 to process
the style change message.

What happened here is that the program sent a message
while holding a critical section.

Since message handling can trigger hooks and cross-thread activity,
you cannot hold any

resources when you send a message because
the hook or the message recipient might want to

acquire that
resource that you own,
resulting in a deadlock.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

