
1/4

December 27, 2007

If you need anything other than natural alignment, you
have to ask for it

devblogs.microsoft.com/oldnewthing/20071227-00

Raymond Chen

If you need variables to be aligned a particular way,
you need to ask for it.

Let’s say I have the following code:

void fn()

{

int a;

char b;

long c;

char d[10];

}

What would the alignment of the starting adresses of a,b,c and d be?

What would the alignment be if the memory were allocated on heap?

If this alignment varies for different data types
within the same translation unit,
is there a way to
force uniform alignment for all types?

If you need a particular alignment, you have to ask for it.
By default,
all you can count on is

that
variables are aligned according to their natural requirements.

First, of course, there is no guarantee that local variables
even reside on the stack.
The

optimizer may very well decide that particular local
variables can reside in registers, in which

case it has no
alignment at all!

There are a few ways to force a particular alignment.
The one that fits the C language

standard is to use a union:

union char_with_int_alignment {

char ch;

int Alignment;

} u;

https://devblogs.microsoft.com/oldnewthing/20071227-00/?p=24013

2/4

Given this union, you can say u.ch to obtain a
character whose alignment is suitable for an

integer.

The Visual C++ compiler supports a declaration specifier to
override the default alignment of

a variable.

typedef struct __declspec(align(16)) _M128 {

 unsigned __int64 Low;

 __int64 High;

} M128, *PM128;

This structure consists of two eight-byte members.
Without the __declspec(align(#))

directive,
the alignment of this structure would be 8-byte,
since that is the alignment of the

members with the most
restrictive alignment.
(Both unsigned __int64 and
 __int64 are

naturally 8-byte-aligned.)
But with the directive, the aligment is expanded to 16 bytes,
which

is more restrictive than what the structure normally would be.
This particular structure is

declared with more restrictive
alignment because it is intended to be use to hold 128-bit

values
that will be used by the 128-bit XMM registers.

A third way to force alignment with the Visual C++ compiler
is to use the #pragma

pack(#) directive.
(There is also a “push” variation of this pragma which remembers
the

previous ambient alignment, which can be restored by
a “pop” directive.
And the /Zp#

directive allows you to specify this
pragma from the compiler command line.)
This directive

specifies that members can be placed at alignments
suitable for # -byte objects rather than

their natural
alignment requirements, if the natural alignment is more restrictive.
For

example, if you set the pack alignment to 2, then all objects
that are bigger than two bytes will

be aligned
as if they were two-byte objects.
This can cause 32-bit values and 64-bit values to

become mis-aligned;
it is assumed that you know what you’re doing any can compensate

accordingly.

For example, consider this structure whose natural alignment
has been altered:

#pragma pack(1)

struct misaligned_members {

WORD w;

DWORD dw;

BYTE b;

};

Given this structure, you cannot pass the address of the
 dw member to a function that

expects a
pointer to a DWORD ,
since the ground rules for programming
specify that all

pointers must be aligned unless unaligned
pointers are explicitly permitted.

3/4

void ExpectsAlignedPointer(DWORD *pdw);

void UnalignedPointerOkay(UNALIGNED DWORD *pdw);

misaligned_members s;

ExpectsAlignedPointer(&s.dw); // wrong

UnalignedPointerOkay(&s.dw); // okay

What about the member w ?
Is it aligned or not?
Well, it depends.

If you allocate a single structure on the heap,
then the w member is aligned,
since heap

allocations are always aligned in a manner suitable
for any fundamental data type.
(I vaguely

recall some possible weirdness with 10-byte floating point
values, but that’s not relevant to

the topic at hand.)

misaligned_members *p = (misaligned_members)

 HeapAllocate(hheap, 0, sizeof(misaligned_members));

Given this code fragment, the member
 p->w is aligned since the entire structure
is suitably

aligned, and therefore so too is w .
If you allocated an array, however, things are different.

misaligned_members *p = (misaligned_members)

 HeapAllocate(hheap, 0, 2*sizeof(misaligned_members));

In this code fragment, p[1].w is not aligned
because the entire misaligned_members

structure
is 2+4+1=7 bytes in size since the packing is set to 1.
Therefore, the second

structure begins at an unaligned offset
relative to the start of the array.

One final issue is the expectations for alignment when using
header files provided by an

outside component.
If you are writing a header file that will be consumed by others,
and you

require special alignment, you need to say so explicitly
in your header file,
because you don’t

control the code that will be including your
header file.
Furthermore, if your header file

changes any compiler settings,
you need to restore them before your header file is complete.

If you don’t follow this rule, then you create the situation where
a program stops working if a

program changes the order in which
it includes seemingly-unrelated header files.

// this code works

#include <foo.h>

#include <bar.h>

// this code doesn't

#include <bar.h>

#include <foo.h>

The problem was that bar.h changed the default
structure alignment and failed to return it

to the original value
before it was over.
As a result, in the second case,
the structure

alignment for the foo.h header file
got “infected” and no longer matched the structure

alignment
used by the foo library.

You can imagine an analogous scenario where deleting a header file can
cause a program to

stop working.

4/4

Therefore, if you’re writing a header file that will be used by others,
and you require

nonstandard alignment for your structures,
you should use this pattern to change the default

alignment:

#include <pshpack1.h> // change alignment to 1

... stuff that assumes byte packing ...

#include <poppack.h> // return to original alignment

In this way, you “leave things the way you found them”
and avoid the mysterious infection

scenarios described above.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

