How do 16-bit programs start up?

=. devblogs.microsoft.com/oldnewthing/20071203-00

December 3, 2007

Raond Chen

Back in 16-bit Windows, MS-DOS cast a long and dark shadow. The really ugly low-level
munging was very much in the MS-DOS spirit. You opened files by setting up registers and
issuingan int 21h ,just like in MS-DOS. Although the interrupt went to Windows instead,
Windows maintained the MS-DOS calling convention. Process startup followed the same
“real men write in assembly language” philosophy.

All the parameters to a 16-bit program were passed in registers. The entry point to a 16-bit
process received the following parameters on Windows 3.1:

AX zero (used to contain even geekier information in Windows 2)

BX stack size

CX heap size

DX unused (reserved)

Sl previous instance handle

DI instance handle

BP zero (for stack walking)

DS application data segment

ES selector of program segment prefix

SS application data segment (SS=DS)

SP top of stack

Hey, nobody said that 16-bit Windows was designed for portability.

1/4


https://devblogs.microsoft.com/oldnewthing/20071203-00/?p=24323
http://blogs.msdn.com/oldnewthing/archive/2006/12/04/1205831.aspx#1240457

The first thing a 16-bit program did was call the InitTask function. This function receives

its parameters in registers, precisely in the format that they are received by the program

entry point. The InitTask function initializes the stack, the data segment, the heap,

retrieves and prepares the command line, recovers the nCmdShow parameter that was

passed to WinExec , all the normal startup stuff. It even edits the stack of the caller so that

real-mode stack walking works (critical for memory management in real-mode). When
InitTask is all finished, it returns with the registers set for the next phase:

AX selector of program segment prefix (or O on error)

BX offset of command line

CX stack limit

DX nCmdShow

Sl previous instance handle

DI instance handle

BP top of stack (for stack walking)

DS application data segment

ES selector of command line

SS application data segment (SS=DS)
SP edited top of stack

Once InitTask returns, the stack, heap, and data segment are "ready to run," and if you

have no other preparations to do, you can head right for the application's winMain function.

Minimal startup code therefore would go like this:

call far InitTask

test ax, ax
jz exit

push di ;
push si ;
push es ;
push bx ;
push dx ;

. some lines of

hInstance

hPrevInstance

lpszCmdLine selector

lpszCmdLine offset

nCmdShow

code that aren't important to the discussion ...

call far winMain ; call the application's WinMain function
; return value from WinMain is in the AL register,

; conveniently positioned for the exit process coming up next
exit:

mov ah, 4Ch ;
int 21h ;

exit process function code
do it

2/4



Why wasn't the application entry point called main? Well, for one thing, the name main was
already taken, and Windows didn't have the authority to reserve an alternate definition.

There was no C language standardization committee back then; C was what Dennis said it
was, and it was hardly guaranteed that Dennis would take any special steps to preserve
Windows source code compatibility in any future version of the C language. Since K&R didn't
specify that implementations could extend the acceptable forms of the main function, it was
entirely possible that there was a legal C compiler that rejected programs that declared

main incorrectly. The current C language standard explicitly permits implementation-
specific alternate definitions for main , but requiring all compilers to support this new
Windows-specific version in order to compile Windows programs would gratuitously restrict
the set of compilers you could use for writing Windows programs.

If you managed to overcome that obstacle, you'd have the problem that the Windows version
of main would have to be something like this:

int main(int argc, char *argv[], HINSTANCE hinst,
HINSTANCE hinstPrev, int nCmdShow);

Due to the way C linkage was performed, all variations of a function had to agree on the
parameters they had in common. This means that the Windows version would have to add its
parameters onto the end of the longest existing version of main , and then you'd have to
cross your fingers and hope that the C language never added another alternate version of
main. If you went this route, your crossed fingers failed you, because it turns out that a third
parameter was added to main some time later, and it conflicted with your Windows-friendly
version.

Suppose you managed to convince Dennis not to allow that three-parameter version of

main . You still have to come up with those first two parameters, which means that every
program's startup code needs to contain a command line parser. Back in the 16-bit days,
people scrimped to save every byte. Telling them, "Oh, and all your programs are going to be
2KB bigger" probably wouldn't make you a lot of friends. I mean, that's four sectors of I/O off
a floppy disk!

But probably the reason why the Windows entry point was given a different name is to
emphasize that it's a different execution environment. If it were called main , people would
take C programs designed for a console environment, throw them into their Windows
compiler, and then run them, with disastrous results.

&tymond Chen

Follow

3/4


http://blogs.msdn.com/oldnewthing/archive/2006/12/04/1205831.aspx#1206443
http://netlib.bell-labs.com/who/dmr/
http://qnxcs.unomaha.edu/help/product/neutrino/lib_ref/m/main.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4



