
1/2

November 23, 2007

The forgotten common controls: The
GetEffectiveClientRect function

devblogs.microsoft.com/oldnewthing/20071123-00

Raymond Chen

The GetEffectiveClientRect  function is another one in the category of functions that

everybody tries to pretend doesn’t exist. It’s not as bad as MenuHelp, but it’s still pretty awful.

The idea behind the GetEffectiveClientRect  function is that you have a frame window

with a bunch of optional gadgets, such as a status bar or toolbar. The important thing is that

these optional gadgets all reside at the borders of the window. In our examples, the toolbar

goes at the top and the status bar goes at the bottom. You might also have gadgets on the left

and right such as a navigation tree or a preview pane. They can also be stacked up against the

border, such as an address bar and a toolbar. The important thing is that all the gadgets go

around the border.
The first parameter to the GetEffectiveClientRect  function is the

window whose effective client rectangle you wish to compute; no surprises there. The second

parameter is a pointer to the rectangle that receives the result; again, hardly surprising. It’s

that third parameter, the array of integers, that is the weird one.
The first two integers in the

array are ignored. The remainder of the array consists of pairs of nonzero integers; the array

is terminated by a pair consisting of zeroes. Of each pair, only the second integer is used; it is

the control identifier of a child window of the window you passed in. If that child window is

visible (in a special sense I’ll explain later), then its window rectangle is subtracted from the

parent window’s client rectangle. After all the rectangles of visible children are subtracted

away, what remains is the effective client rectangle.
For example, suppose your window’s

client rectangle is 100×100 and there is a toolbar at (0, 0)–(100, 20) and a status bar at

(0, 90)–(100, 100), both visible. The GetEffectiveClientRect  starts with the full client

rectangle (0, 0)–(100, 100), subtracts the two rectangles corresponding to the toolbar and

status bar, resulting in (0, 20)–(100, 90).

(0, 0) (100, 0)
toolbar

(0, 20) (100, 20)

effective client

(0, 90) (100, 90)

(0 100) (100 100)

https://devblogs.microsoft.com/oldnewthing/20071123-00/?p=24403
http://blogs.msdn.com/oldnewthing/archive/2006/06/08/622194.aspx


2/2

status bar(0, 100) (100, 100)

If the control IDs for the toolbar and status bar are 100 and 101, respectively, then the array

you need to pass would be { *, *, ¤, 100, ¤, 101, 0, 0 }  where * can be anything

and ¤ can be any nonzero value.
Continuing from the above example, if the status bar were

hidden, then the effective client rectangle would be (0, 20)–(100, 100) because hidden

windows are ignored when computing the effective client rectangle.
Okay, first question:

What is that special sense of visible I mentioned above? I didn’t write simply visible because

IsWindowVisible  reports a window as visible only if the window and all its parents are

visible. But all that GetEffectiveClientRect  cares about is whether the window is visible

in the sense that the WS_VISIBLE  style is set. In other words, that the window would be

visible if its parent is.
Why does the GetEffectiveClientRect  use this strange definition

of visible? Because it wants to make it possible for you to get the effective client rectangle of a

window while it is still hidden, the result being the effective client rectangle you would get

once the window becomes visible. This is valuable because it allows you to do your

calculations “behind the scenes” while the window is still hidden (for example, in your

WM_CREATE  handler).
Second question: Why is the integer array so crazy? What’s with all

the ignored values and the “must be nonzero” values? Why can’t it just be the array { 100,

101, 0 } ?
The format of the integer array is the same as the one used by the

ShowHideMenuCtl  function. The intent was that you could use the same array for both

functions. The two functions do work well together: The ShowHideMenuCtl  function do the

work of letting the user toggle the toolbar and status bar on and off, and

GetEffectiveClientRect  lets you compute the client rectangle that results.

That said, the GetEffectiveClientRect  function is largely ignored nowadays. It doesn’t

do anything you couldn’t already do yourself, and when you write your own version, you

don’t need to deal with that crazy integer array.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

