
1/3

November 14, 2007

Psychic debugging: IP on heap
devblogs.microsoft.com/oldnewthing/20071114-00

Raymond Chen

Somebody asked the shell team to look at this crash in a
context menu shell extension.

IP_ON_HEAP: 003996d0

ChildEBP RetAddr

00b2e1d8 68f79ca6 0x3996d0

00b2e1f4 7713a7bd ATL::CWindowImplBaseT<

 ATL::CWindow,ATL::CWinTraits<2147483648,0> >

 ::StartWindowProc+0x43

00b2e220 77134be0 USER32!InternalCallWinProc+0x23

00b2e298 7713a967 USER32!UserCallWinProcCheckWow+0xe0

...

eax=68f79c63 ebx=00000000 ecx=00cade10 edx=7770df14 esi=002796d0 edi=000603cc

eip=002796d0 esp=00cade4c ebp=00cade90 iopl=0 nv up ei pl nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010206

002796d0 c744240444bafb68 mov dword ptr [esp+4],68fbba44

You should be able to determine the cause instantly.

I replied,

This shell extension is using a non-DEP-aware version of ATL.
They need to upgrade to ATL 8
or disable DEP.

This was totally obvious to me, but the person who asked the
question met it with stunned

amazement.
I guess the person forgot that older versions of
ATL are notorious DEP violators.

You see a DEP violation, you see that it’s coming from ATL,
and bingo, you have your answer.

When DEP was first introduced, the base team sent out mail
to the entire Windows division

saying,
“Okay, folks, we’re turning it on.
You’re going to see a lot of application compatibility

problems,
especially this ATL one.”

Psychic powers sometimes just means having a good memory.

Even if you forgot that information, it’s still totally obvious
once you look at the scenario and

understand what it’s trying to do.

https://devblogs.microsoft.com/oldnewthing/20071114-00/?p=24523

2/3

The fault is IP_ON_HEAP which is precisely
what DEP protects against.
The next question is

why IP ended up on the heap.
Was it a mistake or intentional?

Look at the circumstances surrounding the faulting instruction again.
The faulting

instruction is the window procedure for a window,
and the action is storing a constant into

the stack.
The symbols of the caller tell us that it’s some code in ATL,
and you can even go

look up the source code yourself:

template <class TBase, class TWinTraits>

LRESULT CALLBACK CWindowImplBaseT< TBase, TWinTraits >

 ::StartWindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) {

 CWindowImplBaseT< TBase, TWinTraits >* pThis =

 (CWindowImplBaseT< TBase, TWinTraits >*)

 _AtlWinModule.ExtractCreateWndData();

 pThis->m_hWnd = hWnd;

 pThis->m_thunk.Init(pThis->GetWindowProc(), pThis);

 WNDPROC pProc = pThis->m_thunk.GetWNDPROC();

 ::SetWindowLongPtr(hWnd, GWLP_WNDPROC, (LONG_PTR)pProc);

 return pProc(hWnd, uMsg, wParam, lParam);

}

Is pProc corrupted and we’re jumping to a random
address on the heap?
Or was this

intentional?

ATL is clearly generating code on the fly (the window procedure
thunk), and it is in execution

of the thunk that we encounter
the DEP exception.

Now, you didn’t need to have the ATL source code to realize that
this is what’s going on.
It is

a very common pattern in framework libraries to put
a C++ wrapper around window

procedures.
Since C++ functions have a hidden this parameter,
the wrappers need to

sneak that parameter in somehow,
and one common technique is to generate some code on

the fly
that sets up the hidden this parameter before
calling the C++ function.
The value at

[esp+4] is the window handle,
something that can be recovered from the this
pointer,

so it’s a handly thing to replace with this
before jumping to the real C++ function.

The address being stored as the this parameter is
 68fbba44 ,
which is inside the DLL in

question.
(You can tell this because the return address,
which points to the ATL thunk code,

is at
 68f79ca6 which is in the same neighborhood
as the mystery pointer.)
Therefore, this

is almost certainly an ATL thunk for a static C++ object.

In other words, this is extremely unlikely be a jump to a random address.
The code at the

address looks too good.
It’s probably jumping there intentionally,
and the fact that it’s

coming from a window procedure thunk
confirms it.

But our tale is not over yet.
The plot thickens.
We’ll continue next time.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

