
1/2

November 9, 2007

You just have to accept that the file system can change
devblogs.microsoft.com/oldnewthing/20071109-00

Raymond Chen

A customer who is writing some sort of code library
wants to know how they should

implement a function that determines
whether a file exists.
The usual way of doing this is by

calling
GetFileAttributes,
but what they’ve found is that sometimes
 GetFileAttributes

will report that a file exists,
but when they get around to accessing the file, they get the error

ERROR_DELETE_PENDING .

The lesser question is what
 ERROR_DELETE_PENDING means.
It means that somebody

opened the file with
 FILE_SHARE_DELETE sharing,
meaning that they don’t mind if

somebody deletes the file while
they have it open.
If the file is indeed deleted, then it goes

into “delete pending” mode,
at which point the file deletion
physically occurs when the last

handle is closed.
But while it’s in the “delete pending” state,
you can’t do much with it.
The

file is in limbo.

You just have to be prepared for this sort of thing to happen.
In a pre-emptively multi-tasking

operating system,
the file system can change at any time.
If you want to prevent something

from changing in the file system,
you have to open a handle that denies whatever operation

you want
to prevent from happening.
(For example, you can prevent a file from being deleted

by
opening it and not specifying FILE_SHARE_DELETE
in your sharing mode.)

The customer wanted to know how their “Does the file exist?”
library function should behave.

Should it try to open the file to see if it is in delete-pending state?
If so, what should the

function return?
Should it say that the file exists?
That it doesn’t exist?
Should they have

their function return one of three values
(Exists, Doesn’t Exist, and Is In Funky Delete State)

instead of a boolean?

The answer is that any work you do to try to protect users from this
weird state is not going to

solve the problem because the file system
can change at any time.
If a program calls “Does

the file exist?” and the file does exist,
you will return true ,
and then during the execution of

your return statement,
your thread gets pre-empted and somebody else comes in and puts

the
file into the delete-pending state.
Now what?
Your library didn’t protect the program

from anything.
It can still get the delete-pending error.

https://devblogs.microsoft.com/oldnewthing/20071109-00/?p=24553
http://blogs.msdn.com/oldnewthing/archive/2007/10/23/5612082.aspx

2/2

Trying to do something to avoid the delete-pending state doesn’t accomplish
anything since

the file can get into that state
after you returned to the caller saying “It’s all clear.”
In one of

my messages, I wrote that it’s like fixing a race condition
by writing

// check several times to try to avoid race condition where

// g_fReady is set before g_Value is set

if (g_fReady && g_fReady && g_fReady && g_fReady && g_fReady &&

 g_fReady && g_fReady && g_fReady && g_fReady && g_fReady &&

 g_fReady && g_fReady && g_fReady) { return g_Value; }

The compiler folks saw this message and got a good chuckle out of it.
One of them facetiously

suggested that they add code to the compiler
to detect this coding style and not optimize it

away.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

