
1/3

November 5, 2007

Why do we even have the DefWindowProc function?
devblogs.microsoft.com/oldnewthing/20071105-00

Raymond Chen

Some time ago, I looked at two ways of reimplementing
the dialog procedure
(method 1,

method 2).
Commenter “8” wondered
why we have a DefWindowProc function at all.
Couldn’t

window procedures have followed the dialog box model,
where they simply return FALSE to

indicate that
they want default processing to occur?
Then there would be no need to export

the DefWindowProc
function.

This overlooks one key pattern for derived classes:
Using the base class as a subroutine.
That

pattern is what prompted people to ask for
dialog procedures that acted like window

procedures.
If you use the “Return FALSE to get default behavior”
pattern,
window

procedures would go something like this:

BOOL DialogLikeWndProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

... handle messages and return TRUE ...

}
// We didn't have any special processing; do the default thing

return FALSE;

}

Similarly, subclassing in this hypothetical world would go like this:

BOOL DialogLikeSubclass(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

... handle messages and return TRUE ...

}
// We didn't have any special processing; let the base class try

CallDialogLikeWindowProc(PrevDialogLikeWndProc, hwnd, uMsg, wParam, lParam);

}

This works as long as what you want to do is override the base class
behavior entirely.
But

what if you just want to augment it?
Calling the previous window procedure is analogous to

calling the
base class implementation from a derived class,
and doing so is quite common in

https://devblogs.microsoft.com/oldnewthing/20071105-00/?p=24583
http://blogs.msdn.com/oldnewthing/archive/2003/11/12/55659.aspx
http://blogs.msdn.com/oldnewthing/archive/2003/11/13/55662.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/25/583093.aspx#584521
http://blogs.msdn.com/oldnewthing/archive/2003/11/12/55659.aspx

2/3

object-oriented programming,
where you want the derived class to behave “mostly” like the

base class.
Consider, for example, the case where we want to allow the user
to drag a window

by grabbing anywhere in the client area:

LRESULT CALLBACK CaptionDragWndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

LRESULT lres;

switch (uMsg) {

case WM_NCHITTEST:

 lres = DefWindowProc(hwnd, uMsg, wParam, lParam);

 if (lres == HTCLIENT) lres = HTCAPTION;

 return lres;

...

}
return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

We want our hit-testing to behave just like normal,
with the only exception that clicks in the

client area
should be treated as clicks on the caption.
With the DefWindowProc model,
we

can do this by calling DefWindowProc to
do the default processing, and then modifying
the

result on the back end.
If we had use the dialog-box-like model,
there would have been no

way to call the “default handler”
as a subroutine in order to make it to the heavy lifting.
We

would be forced to do all the work or none of it.

Another avenue that an explicit DefWindowProc
function opens up is modifying messages

before they reach the default handler.
For example, suppose you have a read-only edit

control,
but you want it to look like a normal edit control instead
of getting the static look.

You can do this by modifying the message that you pass
to DefWindowProc :

...

case WM_CTLCOLORSTATIC:

 if (GET_WM_CTLCOLOR_HWND(wParam, lParam) == m_hwndEdit)

 {

 // give it the "edit" look

 return DefWindowProc(hwnd, WM_CTLCOLOREDIT, wParam, lParam);

 }

 ...

Another common operation is changing one color attribute of an
edit control while leaving

the others intact.
For this, you can use DefWindowProc as a subroutine
and then tweak the

one attribute you want to customize.

3/3

case WM_CTLCOLORSTATIC:

 if (GET_WM_CTLCOLOR_HWND(wParam, lParam) == m_hwndDanger)

 {

 // Start with the default color attributes

 LRESULT lres = DefWindowProc(hwnd, uMsg, wParam, lParam);

 // Change text color to red; leave everything else the same

 SetTextColor(GET_WM_CTLCOLOR_HDC(wParam, lParam), RGB(255,0,0));

 return lres;

 }

 ...

Getting these types of operations to work with the dialog box
model would be a significantly

trickier undertaking.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

