
1/2

October 26, 2007

If you pass enough random numbers, eventually one of
them will look valid

devblogs.microsoft.com/oldnewthing/20071026-00

Raymond Chen

One customer traced a problem they were having to the way they
were calling a function

similar in spirit to this one:

HGLOBAL CopyClipboardData(UINT cf)

{

HGLOBAL hglob = NULL;

HANDLE h = GetClipboardData(cf);

if (h) {

 void *p = GlobalLock(h);

 if (p) {

 SIZE_T size = GlobalSize(h);

 hglob = GlobalAlloc(GMEM_FIXED, size);

 if (hglob) {

 CopyMemory(hglob, p, size);

 }

 GlobalUnlock(h);

 }

}
return hglob;

}

This function takes a clipboard format and
looks for it on the clipboard.
If found, it returns a

copy of the data.

Looks great, huh?

The problem is that the customer would sometimes call the function as

CopyClipboardData(CF_BITMAP) .
The CF_BITMAP clipboard format stores its contents in

the form of a HBITMAP ,
not an HGLOBAL .

The question from the customer:

https://devblogs.microsoft.com/oldnewthing/20071026-00/?p=24683

2/2

This code was written in 2002, and we are wondering why it works
“most” of the time and
crashes sporadically.
We expected that the call to GlobalLock would fail
with an invalid
parameter error, but sometimes it succeeds,
and then when we call
 GlobalSize we crash.
Why does it crash sometimes?

You already know the answer to this.
GlobalAlloc works closely with
GlobalLock so that

GlobalLock can be fast.
The bitmap handle returned by GetClipboardData
usually fails

the quick tests performed by GlobalLock
to see whether the parameter is a fixed memory

block,
in which case the GlobalLock must go down its slow code path,
and it is in this slow

code path that the function recognizes that the
the handle is downright invalid.

But once in a rare while, the bitmap handle happens to smell just
enough like a fixed global

handle that it passes the tests,
and GlobalLock uses its highly optimized code path
where it

says,
“Okay, this is one of those fixed global handles that
 GlobalAlloc created for me.
I can

just return the pointer back.”
Result:
The call to GlobalLock succeeds
(garbage in, garbage

out),
and then you crash in the GlobalSize function
where it tries to use the HBITMAP as

if it were
a HGLOBAL and access some of the memory block metadata,
which isn’t there since

the handle isn’t valid after all.

The bitmap handle is basically a random number from the global
heap’s point of view, since

it’s just some number that some other
component made up.
It’s not a global handle.
If you

generate enough random numbers,
eventually one of them will look like a valid parameter.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/11/09/254441.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

