
1/2

October 8, 2007

Which windows appear in the Alt+Tab list?
devblogs.microsoft.com/oldnewthing/20071008-00

Raymond Chen

Commenter Phil Quirk
wants to know what the rules are for determining which windows

appear in the Alt+Tab list.
It’s actually pretty simple although hardly anything you’d be able

to guess
on your own.
Note: The details of this algorithm are an implementation detail.
It

can change at any time, so don’t rely on it.
In fact, it already changed with Flip and Flip3D;

I’m just talking about the Classic Alt+Tab window here.

For each visible window,
walk up its owner chain until you find the root owner.
Then walk

back down the visible last active popup chain until you find
a visible window.
If you’re back

to where you’re started, then put the window in the
Alt+Tab list.
In pseudo-code:

BOOL IsAltTabWindow(HWND hwnd)

{

// Start at the root owner

HWND hwndWalk = GetAncestor(hwnd, GA_ROOTOWNER);

// See if we are the last active visible popup

HWND hwndTry;

while ((hwndTry = GetLastActivePopup(hwndWalk)) != hwndTry) {

 if (IsWindowVisible(hwndTry)) break;

 hwndWalk = hwndTry;

}
return hwndWalk == hwnd;

}

The purpose of this algorithm is to assign the most meaningful
representative winow from

each cluster of windows
related by ownership.
(Notice that the algorithm doesn’t care

whether the owned window is
modal or non-modal.)

At least that’s the simple rule if you’re not playing crazy window
style games.
The

WS_EX_TOOLWINDOW and WS_EX_APPWINDOW
extended styles were created so people can

play games and put their
window in the Alt+Tab list or take it out even if the simple rule

would normally have decided otherwise.
This is one of those
“Okay, if you think you’re

smarter than Windows, here’s your chance
to prove it” options.
Personally, I would avoid

them since it makes your window behave
differently from the rest of the windows in the

system.

https://devblogs.microsoft.com/oldnewthing/20071008-00/?p=24863
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#416509

2/2

A window with the
 WS_EX_TOOLWINDOW extended style is treated as if it
weren’t visible, even

if it is.
A window with the
 WS_EX_APPWINDOW extended style is treated as if it
has no owner,

even if it does.

Once you start adding these extended styles, you enter the world
of “I’m trying to work

around the rules” and the result is typically
even worse confusion than what you had without

them.

I’m not sure what the original commenter is getting at.
The window hierarchy described in

the suggestion
(which doesn’t make it so much a suggestion as it is a request
for me to debug

their problem) says that window C is
modal on both windows A and B, which doesn’t make

sense to me, since a window has only one owner.

The algorithm for choosing the Alt+Tab representative from each
cluster of windows may not

be the best, but it’s what we have.
I wouldn’t be surprised if the details are tweaked from time

to time.
No, wait, let me rephrase that.
I know that the details are tweaked from time to time.

The spirit of the operation is preserved
(to show the windows the user can switch to, using

the most “natural”
candidate for each cluster of windows),
but the specific details may be

fined-tuned as the concept of “naturalness”
is refined.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

