
1/2

September 19, 2007

What happens if you pass a source length greater than
the actual string length?

devblogs.microsoft.com/oldnewthing/20070919-00

Raymond Chen

Many functions accept a source string that consists of both a pointer
and a length.
And if you

pass a length that is greater than the length of the string,
the result depends on the function

itself.

Some of those functions, when given a string and a length, will stop
either when the length is

exhausted or a null terminator is reached
whichever comes first.
For example, if you pass a

cchSrc greater than the
length of the string to the
 StringCchCopyN function, it will stop

at the null
terminator.

On the other hand, many other functions (particularly those in the
NLS family)
will

cheerfully operate past a null character if you
ask them to.
The idea here is that since you

passed an explicit size,
you’re consciously operating on a buffer which might
contain

embedded null characters.
Because, after all, if you passed an explicit source size,
you really

meant it, right?
(Maybe you’re operating on a BSTR , which supports
embedded nulls; to get

the size of a BSTR you must
use a function like SysStringLen .)
For example, if you call

CharUpperBuff(psz, 20) , then the function
really will convert to uppercase 20 TCHAR s

starting at psz .
If there happens to be a null character at psz[10] ,
the function will

convert the null to uppercase and continue
converting the next ten TCHAR s as well.

I’ve seen programs crash because they thought that functions
like CharUpperBuff and

MultiByteToWideChar
stopped when they encountered a null.
For example, somebody

might write

https://devblogs.microsoft.com/oldnewthing/20070919-00/?p=25063

2/2

// buggy code - see discussion

void someFunction(char *pszFile)

{

CharUpperBuff(pszFile, MAX_PATH);

... do something with pszFile ...

}

void Caller()

{

char buffer[80];

sprintf(buffer, "file%d", get_fileNumber());

someFunction(buffer);

}

The intent here was for someFunction
to convert the string to uppercase
before operating

on it, up to MAX_PATH characters’ worth,
but instead what happens is that the MAX_PATH

characters
starting at pszFile are converted, even though the
actual buffer is shorter!
As a

result, MAX_PATH − 80 = 220
characters beyond the end of buffer are also converted.

And since that’s a stack buffer,
those bytes are likely to include the return address.
Result:

Crash-o-rama.
Things get even more interesting if the short buffer had been allocated
on the

heap instead.
Then instead of corrupting your return address (which you would
probably

notice as soon as the function returned),
you corrupt the heap,
which typically doesn’t

manifest itself in a crash until long after
the offending function has left the scene of the

crime.

Critique, then, this replacement function:

// buggy code - do not use

int invariant_strnicmp(char *s1, char *s2, size_t n)

{

// [Update: 9:30am - typo fixed]

return CompareStringA(LOCALE_INVARIANT, NORM_IGNORECASE,

 s1, n, s2, n) - CSTR_EQUAL;

}

(Michael Kaplan has one answer
different from the one I was looking for.)

Raymond Chen

Follow

http://blogs.msdn.com/michkap/archive/2006/07/09/658454.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

