
1/3

September 10, 2007

If control-specific messages belong to the WM_USER
range, why are messages like BM_SETCHECK in the
system message range?

devblogs.microsoft.com/oldnewthing/20070910-00

Raymond Chen

When I discussed which message numbers belong to whom,
you may have noticed that the

messages for edit boxes,
buttons, list boxes, combo boxes,
scroll bars,
and static controls go

into the system range even though
they are control-specific.
How did those messages end up

there?

They didn’t start out there.

In 16-bit windows, these control-specific messages
were in the control-specific message

range,
as you would expect.

#define LB_ADDSTRING (WM_USER + 1)

#define LB_INSERTSTRING (WM_USER + 2)

#define LB_DELETESTRING (WM_USER + 3)

#define LB_RESETCONTENT (WM_USER + 5)

#define LB_SETSEL (WM_USER + 6)

#define LB_SETCURSEL (WM_USER + 7)

#define LB_GETSEL (WM_USER + 8)

#define LB_GETCURSEL (WM_USER + 9)

#define LB_GETTEXT (WM_USER + 10)

...

Imagine what would have happened had these message
numbers been preserved during the

transition to Win32,

(Giving you time to exercise your imagination.)

Here’s a hint.
Since 16-bit Windows ran all programs in the same address space,
programs

could do things like this:

char buffer[100];

HWND hwndLB = <a list box that belongs to another process>

SendMessage(hwndLB, LB_GETTEXT, 0, (LPARAM)(LPSTR)buffer);

https://devblogs.microsoft.com/oldnewthing/20070910-00/?p=25203
http://blogs.msdn.com/oldnewthing/archive/2003/12/02/55914.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/11/03/251670.aspx

2/3

This reads the text of an item in a list box that belongs to
another process.
Since processes

ran in the same address space, the address of the
buffer in the sending process is valid in the

receiving process,
so that when the receiving list box copies the result to the buffer,
it all

works.

Now go back and imagine what would have happened had these
message numbers been

preserved during the transition to Win32.

(Giving you time to exercise your imagination.)

Consider a 32-bit program that does exactly the same thing
that the code fragment above

does.
The code probably was simply left unchanged when the
program was ported from 16-

bit to 32-bit code,
since it doesn’t generate any compiler warnings
and therefore does nothing

to draw attention to itself
as needing special treatment.

But since processes run in separate address spaces
in Win32, the program now crashes.
Well,

more accurately, it crashes that other program,
since it is the other program that tries to

copy the text
into the pointer that it was led to believe was a valid buffer
but in fact was a

pointer into the wrong address space.

Just what you want.
A perfectly legitimate program crashes because of somebody
else’s bug.

If you’re lucky, the programmers will catch this bug during testing,
but how will they know

what the problem is, since their program doesn’t
crash; it’s some other program that crashes!

If you’re not lucky, the bug will slip through testing
(for example, it might be in a rarely-

executed code path),
and the experience of the end user is
“Microsoft Word crashes

randomly. What a piece of junk.”
(When in reality, the crash is being caused by some other

program entirely.)

To avoid this problem, all the “legacy” messages from the
controls built into the window

manager were moved into
the system message category.
That way, when you sent message

0x0189, the window manager
knew that it was LB_GETTEXT and could do the
parameter

marshalling for you.
If it had been left in the WM_USER range,
the window manager wouldn’t

know what to do when it gets message
 0x040A since that might be LB_GETTEXT ,
or it

might be
 TTM_HITTESTA or TBM_SETSEL
or any of a number of other control-specific

messages.

Theoretically, this motion needed to be done only for legacy messages;
i.e., window messages

that existed in 16-bit Windows.
(Noting that Windows 95 added some new 16-bit messages,

so this remapping had to continue at least through Windows NT 4
with the shell update

release.)
Nevertheless, the window manager team added the *_GET*INFO
messages in the

system message range even though there was no need
to put them there
from a compatibility

standpoint.
My suspicion is that it was done to make things easier for
accessibility tools.

3/3

Note however that placing new messages in the system message range
is more the exception

than the rule
for the edit box and other “core” controls.
For example, the new message

EM_SETCUEBANNER
has the numeric value 0x1501 ,
which is well into the WM_USER range.

If you try to send this message across processes
without taking the necessary precautions,

you will crash the target process.

(Note:
Standard disclaimers apply.
I won’t bother repeating this disclaimer on future

articles.)

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/pages/4520252.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

