
1/2

September 5, 2007

Whenever there is a coordination problem, somebody
says, "Hey, let's create a process!"

devblogs.microsoft.com/oldnewthing/20070905-00

Raymond Chen

Whenever there is a coordination problem, somebody says, “Hey, let’s create a process.” Now

you have two coordination problems.
I see this over and over, and paradoxically the people

who create a process for managing a coordinating problem come off looking like proactive

problem-solvers who get ahead of the problem. They’re the go-getters, the people who look at

each problem as an opportunity for continuous improvement. All that great management

buzzword stuff.
It doesn’t matter whether or not the process actually works, because failure is

an orphan, and besides, nobody follows up a year later to see whether your process actually

improved things or whether it was abandoned six weeks after roll-out. You get the credit for

proposing the process in the first place.
Consider this problem at a hypothetical toy company:

Some rumors have started that one of their toy cars is dangerous because of a wiring flaw

that can result in excessive heat and possible fire. (It doesn’t matter what the crisis is. I just

made up something vaguely plausible.) Employees all over the company are getting email

from their relatives asking about the toys, but the employees don’t know what the story is

either. Presumably, the safety department is investigating the problem and providing

guidance to the PR and marketing departments so they can prepare a public response, and if

there really is a problem, they’re working with the product recall team to organize how the

recall will be carried out, and they’re working with the product engineering team to figure out

what changes need to be made to the product to avoid the problem. In other words, the safety

department is up to their ears in crisis.
A employee from the dolls department, whose brother

asked him about this toy car problem, can’t find any information on the status of this issue

and sends email to the “Employee Issues” alias, and a dozen people chime in with “Yes,

please, we would like this information, I want to know what I can tell my brother and

everybody else who is asking me about it. I might even post it on my blog so I can try to

counteract some of the out-of-control rumors that are out there.”
A half hour later, somebody

from the safety department responds, “Yes, we know about this, we’re working on it. Please

don’t say anything publicly since we’re still investigating.”
Somebody watching the saga

unfold proposes a process by which employees can be kept up to date on the status of these

types of emergent crises.

https://devblogs.microsoft.com/oldnewthing/20070905-00/?p=25263


2/2

Create an internal web site that contains a list of all current emergencies at the

company, their status, what information is speculation and what information is solid,

which pieces of that information can be revealed to the public, and recommended

phrasing for the information when it is revealed.

Whenever there is an emergency, the people responsible for responding to the

emergency update the web site with the status of the investigation and the other

information listed above.

This is the wrong solution to the problem.
The reason why this is the wrong solution is that it

suffers from the classic “Create work for somebody else” problem. The people who benefit

from this site are not the same people who would make the site useful. This doesn’t give the

people who make the site useful much incentive to do so. They’re busy dealing with the

emergency. They don’t want to waste the time of one of their valuable investigators to do

“internal PR”.
This scenario repeats itself on a less dramatic scale with various types of inter-

group coordination problems. One group wants to be kept advised of the progress of another

group for whatever reason. But if the second group doesn’t need the first group for anything,

they have no incentive to keep the first group informed.
For example, suppose the first team

provides an interface that the second team uses, and the first team decides that they need to

redesign the interface for whatever reason. During the transition, the first team provides both

interfaces so that the second team can transition from the old to the new, with the request

that the second team let them know when they have finished transitioning to the new

interface so they can remove support for the old one.
Unless the first team keeps on top of

things, the second team will probably forget to tell the first team when they have completed

the transition, or they may even forget to transition to the new interface at all! After all, the

old interface still works.

In this case, the traditional way of making the second team care is to file a bug against them

saying, “Stop using the old interface.” That way, it shows up in their bug statistics as a

reminder, and when they actually do the work, they can resolve the bug back to the first

team. But you can imagine a scenario where the information the first team wants is more of a

continuous nature rather than a single event. (Since bugs track single events.)

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

