
1/3

August 29, 2007

Kernel handles are not reference-counted
devblogs.microsoft.com/oldnewthing/20070829-00

Raymond Chen

Here’s a question that floated past some time ago:

In my code, I have multiple objects that want to talk to the
same handle (via
DeviceIoControl).
Each time I create an object, I use DuplicateHandle
to increment

the reference count on the handle.
That way, when each object calls CloseHandle ,
only the
last one actually closes the handle.
However, when I run the code, I find as soon as the first
object
calls CloseHandle , the handle is no longer valid
and nobody else can use it.
What
flags do I need to pass to CreateFile to get
this to work?

In other words, the code went something like this:

// h is the handle that we want to share with a new CFred object

CFred *MakeFred(HANDLE h)

{

// "Duplicate the handle to bump the reference count"

// This code is wrong - see discussion

// All error checking removed for expository purposes

HANDLE hDup;

DuplicateHandle(GetCurrentProcess(), h,

 GetCurrentProcess(), &hDup,

 0, FALSE, DUPLICATE_SAME_ACCESS);

return new CFred(h);

}

Kernel handles aren’t reference-counted.
When you call CloseHandle ,
that closes the

handle, end of story.

From the original problem statement, we know that
the CFred object closes the handle

when it
is destroyed.
Just for argument’s sake, let’s say that the caller goes
something like

this:

CFred *pfred1 = MakeFred(h);

CFred *pfred2 = MakeFred(h);

delete pfred1;

delete pfred2;

https://devblogs.microsoft.com/oldnewthing/20070829-00/?p=25363

2/3

What actually happens when you run this fragment?

The first time we call MakeFred we take
the original handle h and duplicate it,
but we give

the original handle to the CFred
constructor and leak the hDup !
The original poster

assumed that duplicating a handle merely
incremented the handle’s imaginary reference

count,
so that h == hDup .
(Which would also have made the original poster wonder why
we

even bother having a lpTargetHandle parameter
in the first place.)

When pfred1 is deleted, it closes its handle,
which is h .
This closes the h handle and

renders it invalid
and available to be recycled for another CreateFile
or other operation

that creates a handle.

When pfred2 is deleted, it also closes its handle,
which is still h .
This is now closing an

already-close handle,
which is an error.
If we had bothered calling a method on pfred2 that

used the handle, it would have gotten failures from those operations
as well, since the handle

is no longer valid.
(Well, if we’re lucky, we would have gotten a failure.
If we were unlucky,

the handle would have been recycled and
we ended up performing a DeviceIoControl on

somebody
else’s handle!)

Meanwhile, the calling code’s copy of h is also bad,
since pfred1 closed it when it was

deleted.

What we really want to do here is duplicate the handle
and pass the duplicate to each

object.
The DuplicateHandle function creates a new
handle that refers to the same object

as the original handle.
That new handle can be closed without affecting the original handle.

// h is the handle that we want to share with a new CFred object

CFred *MakeFred(HANDLE h)

{

// Create another handle that refers to the same object as "h"

// All error checking removed for expository purposes

HANDLE hDup;

DuplicateHandle(GetCurrentProcess(), h,

 GetCurrentProcess(), &hDup,

 0, FALSE, DUPLICATE_SAME_ACCESS);

return new CFred(hDup);

}

The fix is one word, highlighted in blue.
We give the duplicated handle to the CFred object.

That way, it gets its own handle which it is free to close
any time it wants, and it won’t affect

anybody else’s handle.

You can think of DuplicateHandle as a sort of
 AddRef for kernel objects.
Each time you

duplicate a handle, the reference count on the
kernel object goes up by one, and you gain a

new reference
(the new handle).
Each time you close a handle, the reference count on the

kernel
object drops by one.

3/3

In summary, a handle is not a reference-counted object.
When you close a handle, it’s gone.

When you duplicate a handle, you gain a new obligation to
close the duplicate, in addition to

the existing obligation
to close the original handle.
The duplicate handle refers to the same

object as the original handle,
and it is the underlying object that is reference-counted.
(Note

that kernel objects can have reference from things
that aren’t handles.
For example, an

executing thread maintains a reference to the underlying
thread object.
Closing the last

handle to a thread will not destroy the thread object
because the thread keeps a reference to

itself as long as it’s running.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

