
1/2

August 16, 2007

What are these strange cmp [ecx], ecx instructions doing
in my C# code?

devblogs.microsoft.com/oldnewthing/20070816-00

Raymond Chen

When you debug through some managed code at the assembly level, you’ll find a whole lot of

seemingly pointless instructions that perform a comparison but ignore the result. What’s the

point of comparing two values if you don’t care what the result is?
In C++, invoking an

instance method on a NULL  pointer results in undefined behavior. In other words, if you do

it, the compiler is allowed to do anything it wants. And what most compilers do is, um,

nothing. They don’t take any special steps if the this  pointer is NULL ; they just generate

code on the assumption that it isn’t. In practice, this often means that everything seems to

run just fine until you access a member variables or call a virtual functions, and then you

crash.
The C# language, by comparison, is quite explicit about what happens if you invoke an

instance method on a null object reference:

The value of E  is checked to be valid. If the value of E  is null, a
System.NullReferenceException  is thrown and no further steps are executed.

The null reference exception must be thrown before the method can be called. That’s what

the strange cmp [ecx], ecx  comparison is for.¹ The compiler doesn’t actually care what

the result of the comparison is; it just wants to raise an exception if ecx  is null. If ecx  is

null, the attempt to dereference it (in order to perform the comparison) will raise an access

violation, which the runtime inspects and turns into a NullReferenceException .
The test

is usually against the ecx  register since the CLR happens to use² the fastcall  calling

convention, which for instance methods passes the this  pointer in the ecx  register. The

pointer the compiler wants to test is going to wind up in the ecx  register sooner or later,³

so it’s not surprising that the test, when it happens, is made against the ecx  register.

Nitpicker’s Corner
¹Although this statement is written as if it were a fact, it is actually my

interpretation based on observation and thinking about how language features are

implemented. It is not an official position of the CLR team nor Microsoft Corporation, and

that interpretation may ultimately prove incorrect.
²”Happens to use” means that this is an

implementation detail, not a contractual guarantee.¹

³Unless the call is optimized. For example, the function might be inlined.

https://devblogs.microsoft.com/oldnewthing/20070816-00/?p=25553
http://msdn.microsoft.com/library/en-us/csspec/html/vclrfcsharpspec_7_4_3.asp
http://blogs.msdn.com/oldnewthing/archive/2007/08/10/4315707.aspx#4327521


2/2

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

