
1/3

August 14, 2007

What is the order of evaluation in C#?
devblogs.microsoft.com/oldnewthing/20070814-00

Raymond Chen

The C and C++ languages leave the order of evaluation generally
unspecified aside from

specific locations called sequence points.
Side effects of operations performed prior to the

sequence point
are guaranteed visible to operations performed after it.¹
For example, the C

comma operator introduces a sequence point.
When you write f(),
g() , the language

guarantees
that any changes to program state made by the function f
can be seen by the

function g ;
 f executes before g .
On the other hand, the multiplication operator does not

introduce
a sequence point.
If you write f() * g()
there is no guarantee which side will be

evaluated first.

(Note that order of evaluation is not the same as associativity and
operator precedence.
Given

the expression f() + g() * h() ,
operator precedence says that it should be evaluated
as if

it were written f() + (g() * h()) ,
but that doesn’t say what order the three functions

will be evaluated.
It merely describes how the results of the three functions will be

combined.)

In the C# language, the order of evaluation is spelled out more
explicitly.
The order of

evaluation for operators is left to right.
if you write f() + g() in C#,
the language

guarantees that
 f() will be evaluated first.
The example in the linked-to page is even

clearer.
The expression F(i) + G(i++) * H(i) is
evaluated as if it were written like this:

temp1 = F(i);

temp2 = i++;

temp3 = G(temp2);

temp4 = H(i);

return temp1 + temp3 * temp4;

The side effects of each part of the expression take effect in left-to-right
order.
Even
the order

of evaluation of function arguments is strictly left-to-right.

Note that
the compiler has permission to evaluate the operands in
a different order if it can

prove that the alternate order of evaluation
has the same effect as the original one
(in the

absence of asynchronous exceptions).

https://devblogs.microsoft.com/oldnewthing/20070814-00/?p=25593
http://msdn2.microsoft.com/en-us/library/Aa691322
http://msdn2.microsoft.com/en-us/library/Aa691335
http://msdn2.microsoft.com/en-us/library/Aa691105

2/3

Why does C# take a much more restrictive view of the order of evaluation?
I don’t know, but

I can guess.²

My guess is that the language designers wanted to reduce the
frequency of a category
of

subtle bugs (in this case, order-of-evaluation dependency).
There are many other examples of

this in the language design.
Consider:

class A {

void f()

{
 int i = 1;

 if (true) {

 int i = 2; // error - redeclaration

 }

}
int x;

void g()

{
 x = 3; // error - using variable before declared

 int x = 2;

}
}

The language designers specified that
the scope of a local variable in C# extends to the
entire

block in which it is declared.
As a first consequence of this,
the second declaration of i
in

the function f()
is illegal since its scope overlaps with the scope of the first
declaration.

This removes a class of bugs that can be traced to one local variable
masking another with the

same name.

In the function g() the assignment x = 3;
is illegal because the x refers not to the

member variable
but to the local variable declared below it.
Notice that the scope of the local

variable begins with the entire block,
and not with the point of declaration as it would have

been in C++.

Nitpicker’s Corner

¹This is a simplified definition of sequence point.
For more precise definitions, consult the

relevant standards documents.

²I have not historically included the sentence
“I don’t know but I can guess” because this is a

blog,
not formal documentation.
Everything is my opinion, recollection, or interpretation.

But it seems that people take what I say to
establish the official Microsoft position on things,

so now I have to go back and add explicit disclaimers.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/08/10/4315707.aspx#4334811
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

