
1/2

August 7, 2007

It rather involved being on the other side of this airtight
hatchway: Executable corruption

devblogs.microsoft.com/oldnewthing/20070807-00

Raymond Chen

In the category of dubious vulnerability, I submit the following
(paraphrased) report:

I discovered that if I take an EXE file and corrupt its header,
then when I try to run the EXE
file, the process starts up
and then crashes.
I used the information in the crash dialog to direct
further investigations, noting that the specific crash location
could be controlled by modifying
particular bytes in the EXE.
Finally, I was able to put all the details together to form
an exploit:
I modified a block of bytes in the EXE file to consist of
code which opens a network socket and
connects it to a command shell,
then modified the header to point to those bytes.
When I run the
EXE, the exploit code runs,
and I can connect to the network socket from another computer
and
control the command shell.

Yeah, that’s great, but what’s the vulnerability?
What you did was take a program that you

have write permission to
and change the code in it to run your exploit.
If you can modify an

EXE file, then you may as well just
replace the entire contents of the file with
the bytes of

PWNZ0RD.EXE .
In other words,
modifying bytes here and there is just a very slow,

inefficient,
and unnecessarily complicated way of doing this:

copy pwnz0rd.exe victim.exe


Then when the user runs the infected program, they’re really running
the PWNZ0RD.EXE

program, and your so-called exploit
can do whatever it wants.
That’s a lot easier than trying

to modify a dozen bytes here,
a dozen bytes there.

In order to trigger the vulnerability,
the user has to run the compromised program,
but a

program is already arbitrary code.
No need to be so sneaky about it.
It’s sort of a tautology:

“Here’s my clever way to get the user to run my code.
Step 1: Write some code.
Step 2: Get the

user to run it.”

Of course, if this corrupted EXE file created other types of problems,
such as crashing

Explorer or triggering a buffer overflow
when the user tried to view its properties,
then you’d

be onto something.
Or if you could somehow avoid detection by not altering the digital

https://devblogs.microsoft.com/oldnewthing/20070807-00/?p=25683


2/2

signature,
then that’d be interesting as well.
But if the only way to trigger code injection is to

run the injected
code, then that’s not really all that interesting.
You just found a roundabout

way of creating a Trojan horse.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

