
1/2

July 26, 2007

How do the names in the file security dialog map to
access control masks?

devblogs.microsoft.com/oldnewthing/20070726-00

Raymond Chen

When you call up the file security dialog, you’ll see options like “Full Control” and “Read and

Execute”. That’s really nice as friendly names go, but when you’re digging into the security

descriptor, you may need to know what those permissions really map to when it comes down

to bits.
First, the summary attributes:

Friendly
name Access mask Inheritance

Full
control

FILE_ALL_ACCESS CONTAINER_INHERIT_ACE +
OBJECT_INHERIT_ACE

Modify FILE_GENERIC_READ |
FILE_GENERIC_WRITE |
FILE_GENERIC_EXECUTE | DELETE

CONTAINER_INHERIT_ACE +
OBJECT_INHERIT_ACE

Read
and
execute

FILE_GENERIC_READ |
FILE_GENERIC_EXECUTE

CONTAINER_INHERIT_ACE +
OBJECT_INHERIT_ACE

List
folder
contents

FILE_GENERIC_READ |
FILE_GENERIC_EXECUTE

CONTAINER_INHERIT_ACE

Read FILE_GENERIC_READ CONTAINER_INHERIT_ACE +
OBJECT_INHERIT_ACE

Write FILE_GENERIC_WRITE & ~READ_CONTROL CONTAINER_INHERIT_ACE +
OBJECT_INHERIT_ACE

If you go to the Advanced view, then you get much more precise control:

Friendly name Access mask

Traverse Folder / Execute File FILE_TRAVERSE == FILE_EXECUTE

https://devblogs.microsoft.com/oldnewthing/20070726-00/?p=25833

2/2

List Folder / Read Data FILE_LIST_DIRECTORY == FILE_READ_DATA

Read Attributes FILE_READ_ATTRIBUTES

Read Extended Attriibutes FILE_READ_EA

Create Files / Write Data FILE_ADD_FILE == FILE_WRITE_DATA

Create Folders / Append Data FILE_ADD_SUBDIRECTORY == FILE_APPEND_DATA

Write Attributes FILE_WRITE_ATTRIBUTES

Write Extended Attributes FILE_WRITE_EA

Delete Subfolders and Files FILE_DELETE_CHILD

Delete FILE_DELETE

Read Permissions READ_CONTROL

Change Permissions WRITE_DAC

Take Ownership WRITE_OWNER

(In the Advanced view, you control inheritance from the “Apply to” drop-down combo box.)

Note that the “Delete Subfolders and Files” and “Delete” attributes together determine

whether you can delete a file or subdirectory: You can delete an item either if you have

DELETE permission on the item or if you have DELETE_CHILD permission on its parent.

This “combo” allows you to set up a directory where everybody can create files and can delete

files that they have created, while still retaining the ability as the directory’s owner to delete

any file in it. You do this by granting yourself DELETE_CHILD permission on the directory

and granting DELETE to CREATOR_OWNER as an inheritable attribute. Since you have

DELETE_CHILD permission, you can delete anything in the directory. And since the

creator/owner has DELETE permission, people can delete the files that they themselves

created.

[Update 2pm: INHERIT_ONLY_ACE should be OBJECT_INHERIT_ACE.]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

