
1/2

July 23, 2007

The real cost of compatibility is not in the hacks; the
hacks are small potatoes

devblogs.microsoft.com/oldnewthing/20070723-00

Raymond Chen

Commenter
Myron A. Semack
asks
how much faster Windows would be if you took out the

backward compatibility
stuff.
Myron is so anxious about this that he
asked the question a

second time.
Asking a question twice typically counts as a reason
not to answer it, but since I

had already written up the answer,
I figured I’d post it anyway.
Oh great,
and now he asked it

a third time.
Myron is so lucky I already wrote up the answer,
because if I hadn’t I would’ve

just skipped the topic altogether.
I don’t respond well to nagging.

The answer is, “Not much, really.”

Because the real cost of compatibility is not in the hacks.
The hacks are small potatoes.
Most

hacks are just a few lines of code
(sometimes as few as zero),
so the impact on performance is

fairly low.
Consider
a compatibility hack for programs that mess up

IUnknown::QueryInterface:

...

ITargetInterface *pti = NULL;

HRESULT hr = pobj->QueryInterface(

 IID_ITargetInterface, (void**)&pti);

if (SUCCEEDED(hr) && !pti) hr = E_FAIL;

The compatibility hack here was just two lines of code.
One to set the pti variable to NULL

and another to check for a common application error and work around it.
The incremental

cost of this is negligible.

Here’s an example of a hack that takes zero lines of code:

HINSTANCE ShellExecute(...)

{

...

return (HINSTANCE)42;

}

https://devblogs.microsoft.com/oldnewthing/20070723-00/?p=25903
http://www.semack.net/
http://blogs.msdn.com/oldnewthing/archive/2006/11/20/1109012.aspx#1115421
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#1117157
http://blogs.msdn.com/oldnewthing/archive/2006/11/20/1109012.aspx#1122951
http://blogs.msdn.com/oldnewthing/archive/2004/03/26/96777.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/11/08/1035971.aspx

2/2

I count this as zero lines of code because the function has to return
something.
You may as

well return a carefully-crafted value chosen for compatibility.
The incremental cost of this is

zero.

No, the real cost of compatibility is in the design.

If you’re going to design a feature that enhances the window manager
in some way,
you have

to think about how existing
programs are going to react to your feature.
These are programs

that predate your feature and naturally know nothing
about it.
Does your feature alter the

message order?
Does it introduce a new point of re-entrancy?
Does it cause a function to

begin dispatching messages
that previously did not?
You may be forced to design your

feature differently in order to
accommodate these concerns.
These issues aren’t things you

can “take out”;
they are inherently part of the feature design.

Consider for example color NTSC.
(Videophiles like to say that NTSC stands for “never twice

the same color.”)

The NTSC color model is backward compatible with the existing system
for black-and-white

television.
How much cheaper would your color television be if you could take out
the

backward compatibility circuitry?
That question misses the point.
The backward

compatibility is in the design of the NTSC color signal.
It’s not a circuit board
(or, to be more

historically accurate, a set of vacuum tubes)
that you can pull out.
You can’t “take out” the

compatibility stuff from your television set.
The compatibility is fundamentally part of the

way the NTSC color
signal works.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

