
1/5

July 10, 2007

The forgotten common controls: The ShowHideMenuCtl
function

devblogs.microsoft.com/oldnewthing/20070710-00

Raymond Chen

The ShowHideMenuCtl function is one of those
functions everybody tries to pretend doesn’t

exist.
You thought MenuHelp was bad;
 ShowHideMenuCtl is even worse.

The idea behind ShowHideMenuCtl was that you
had a window with a menu as well as

controls,
and some of the menu items were checkable,
indicating whether the corresponding

control should be shown.
For example, on your View menu you might have options
named

Toolbar or Status Bar.
If the user checks Toolbar, then the toolbar is shown in the main

window;
if the user unchecks Toolbar, then the toolbar is hidden.

The parameters to the ShowHideMenuCtl function are
a window (the window on which you

want to operate),
a menu identifier (the menu item you wish to toggle),
and a mysterious

array of integers.
Everything hangs on that mysterious array of integers,
which takes the

following form (expressed in pseudo-C):

struct MENUCONTROLINTS {

int idMenu;

int idControl;

};
struct SHOWHIDEMENUCONTROLINTS {

int idMainMenu;

HMENU hmenuMain;

MENUCONTROLINTS rgwMenuControl[];

};

The MENUCONTROLINTS structure is easier to describe.
It merely establishes the

correspondence between a menu item and
the control that will be shown or hidden.

(Exercise: Why do we need two integers?
Why can’t we just give the menu item and the

control the same ID?)
The array of MENUCONTROLINTS structures is terminated
by a pair

whose idMenu is zero.

The tricky bit is the first two entries,
 idMainMenu and hmenuMain .
The hmenuMain is the

handle to the main menu for
the window, and
the idMainMenu is the item on the menu

corresponding
to the “Hide menu” entry on the main menu.
(That’s why hmenuMain need to

https://devblogs.microsoft.com/oldnewthing/20070710-00/?p=26083
http://blogs.msdn.com/oldnewthing/archive/2006/06/08/622194.aspx

2/5

be passed explicitly.
We would normally use GetMenu(hwnd) to get the handle
to the main

menu, but if we’ve removed it, then GetMenu(hwnd)
will return NULL .)
If you don’t want

to have a “Hide menu” option,
you can just put a dummy value in the idMainMenu slot
that

doesn’t correspond to any menu item.
(The value -1 is probably most convenient for this.

Don’t use zero since it terminates the list!)

When you call the ShowHideMenuCtl function,
it searches for the menu item you specified

and toggles the
check mark next to that item.
What happens next depends on what type of

item was found.

If the item is idMainMenu , then the main menu is
attached to or removed from the

window (by using the
 SetMenu function, of course),
corresponding to the check box.

If the item is idMenu , then the corresponding
control is shown or hidden (by using the

ShowWindow
function, of course),
corresponding to the check box.

That’s all there is to it.
The rest is up to you.
For example, when a control is shown or hidden,

it’s still up to your program to relayout the visible controls
to account for the new window

visibility state.
For example, if the user shows the toolbar,
then the other controls need to

move out of the way to make room
for the toolbar.
The ShowHideMenuCtl function can’t do

this for you
since it has no idea what your window layout is.

Let’s put this information into practice.
Start with our
scratch program
and make the

following changes;

http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

3/5

HMENU g_hmenuMain;

INT rgiMenu[] = {

 100, 0,

 101, 200,

 0, 0,

};
BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 /* We'll talk about this line more later */

 rgiMenu[1] = (INT)GetMenu(hwnd);

 CreateWindow(TEXT("Button"), TEXT("Sample"),

 WS_CHILD | BS_PUSHBUTTON, 0, 0, 100, 100,

 hwnd, IntToPtr_(HMENU, 200), g_hinst, 0);

 return TRUE;

}

void

OnDestroy(HWND hwnd)

{

 if (!GetMenu(hwnd))

 DestroyMenu(IntToPtr_(HMENU, rgiMenu[1]));

 PostQuitMessage(0);

}

void OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify)

{

 switch (id) {

 case 100:

 case 101: ShowHideMenuCtl(hwnd, id, rgiMenu); break;

 }

}

HANDLE_MSG(hwnd, WM_COMMAND, OnCommand);

BOOL

InitApp(void)

{

 wc.lpszMenuName = MAKEINTRESOURCE(1);

}

/* add to resource file */

1 MENU PRELOAD

BEGIN

 POPUP "&View"

 BEGIN

 MENUITEM "&Menu Bar", 100, CHECKED

 MENUITEM "&Button", 101

 END

END

Most of the changes are just setting up.
We attach a menu to our window with two options,

one to hide and show the menu bar,
and one to hide and show our custom button.
Since our

window starts out with the menu bar visible
and the button hidden, our menu template

4/5

checks the
“Menu Bar” item but not the “Button” one.

The OnCreate function finishes setting up up the
 rgiMenu array
by putting the main

menu’s handle into index 1 in the
array of integers,
which corresponds to hmenuMain in our

pseudo-structure.
The OnDestroy function destroys the menu if it isn’t
attached to the

window,
since
menus attached to a window are destroyed automatically when the
window is

destroyed.
The magic happens in the OnCommand handler.
If the user picked one of our two

menu items, then we ask
 ShowHideMenuCtl to hide and show the button or menu.

The tricky bit is setting up our rgiMenu .
Let’s break down those integers.

100 Menu identifier for hiding and showing the menu bar

0 Placeholder
(receives main menu handle in OnCreate handler)

101 Menu identifier for hiding and showing the menu bar

200 Control ID for the button that is shown and hidden
(passed to the CreateWindow
function)

0, 0 List terminator

When you run this program,
you can use the “Button” menu option to hide and show the

button,
and you can use the “Menu Bar” menu option to hide and show the window’s
main

menu.
Erm, no wait, you can’t use it to show
the main menu, because the main menu is

hidden!
Naturally, if your program uses the ability to hide the main menu,
you need to

provide some alternate mechanism for bringing the
main menu back,
say via a hotkey or by

adding an option to the System menu.

Okay, now back to that line in the OnCreate function
that I promised to talk about.
If you

have been paying attention, alarm bells should have gone off
in your head at the line

rgiMenu[1] = (INT)GetMenu(hwnd);
because we are casting an HMENU to an integer.
On

64-bit machines, a HMENU is a 64-bit value,
but integers are only 32-bit.
This cast truncates

the handle value and consequently is not
64-bit safe.
Since the ShowHideMenuCtl function

requires an
array of integers, you’re stuck.
You can’t shove a 64-bit menu handle into a 32-bit

integer.
The ShowHideMenuCtl function is fundamentally flawed;
it is not 64-bit

compatible.

Fortunately, nobody uses the ShowHideMenuCtl
function anyway.
Its functionality is so

simple, most programs have already
written a function that does roughly the same thing,
and

since you have to write the layout code anyway,
the ShowHideMenuCtl function doesn’t

really
save you very much effort anyway.
Like MenuHelp ,
the function is entirely vestigial

and isn’t something
you should be tempted to use in any modern program.
It’s a leftover

from the days of 16-bit Windows.

http://blogs.msdn.com/oldnewthing/archive/2003/12/30/46594.aspx

5/5

Why does such a confusing function exist at all?
Well, the shell team thought they were doing

you a favor
by providing this function back in the 16-bit days.
This was originally an internal

function used by
(I think it was) File Manager,
but since it solved a more general problem,

the function was exported and documented.
In the intervening years,
the problem it

addressed has been solved in other ways,
and the introduction of 64-bit Windows rendered

the original
solution unworkable anyway,
but the function and the code behind it must still

linger
in the system for backwards compatibility purposes.

The shell team learned its lesson.
It no longer exports every little helper function and custom

control
for third parties to use.
If a future version of Windows no longer needs the helper

function,
or if a redesign of Windows Explorer removes the need for that
custom control (or

worse, changes the behavior of that custom control),
the shell would still have to carry all the

code around for the
unused function or control
because a function, once documented,

becomes a continuing support burden.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

