
1/2

July 2, 2007

Image File Execution Options just inserts the debugger in
front of the command line

devblogs.microsoft.com/oldnewthing/20070702-00

Raymond Chen

If you use the Image File Execution Options registry key to
force a program to run under the

debugger,
all the kernel does is insert the debugger in front of the command line.
In other

words, the CreateProcess function figure out
what program is about to be run and checks

the Image File Execution
Options.
If it finds a debugger, then the debugger is prepended to

the command line
and then CreateProcess resumes as if that were the command
line you

had passed originally.

In particular, it doesn’t do anything with the other parameters
to the CreateProcess

function.
If you passed special parameters via the STARTUPINFO structure,
those parameters

get passed to the debugger.
And the PROCESS_INFO that is returned by the

CreateProcess function describes the debugger,
not the process being debugged.

Specifically, if you specified the
 STARTF_USESHOWWINDOW flag and passed,
say, SW_HIDE , as

the wShowWindow ,
then the debugger will be hidden.
This bites me every so often when I am

called upon to
debug a program that happens to be launched as hidden.
I’ll slap the debugger

underneath it with Image File Execution
Options,
run through the scenario,
and then…

nothing.

And then eventually I realize,
“Oh, right, the debugger is hidden.”

To unstick myself, I fire up a program like Spy to get the window
handle of the hidden

debugger and fire up a scratch copy of Notepad so
I can make it do my bidding and show the

window.

https://devblogs.microsoft.com/oldnewthing/20070702-00/?p=26193
http://blogs.msdn.com/oldnewthing/archive/2006/10/23/862750.aspx#868476

2/2

ntsd -Ggx notepad

<F12>

Break instruction exception - code 80000003 (first chance)

eax=7ffdf000 ebx=00000001 ecx=00000002 edx=00000003 esi=00000004 edi=00000005

eip=7c901230 esp=00a1ffcc ebp=00a1fff4 iopl=0 nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000246

ntdll!DbgBreakPoint:

7c901230 cc int 3

0:001> r esp=esp-4

0:001> ed esp 1

0:001> r esp=esp-4

0:001> ed esp 0x00010164

0:001> r esp=esp-4

0:001> ed esp eip

0:001> r eip=user32!showwindow

0:001> g

0:001> q

The first two commands push the value SW_SHOWNORMAL
(numerical value 1) onto the stack.

Then goes the window handle.
And then the return address.
Move the instruction pointer to

user32!ShowWindow and
we’ve simulated the function call
 ShowWindow(0x00010164,

SW_SHOWNORMAL); .
Once I let execution resume, *boom* the debugger window appears
and

I can continue my work.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

