
1/2

June 26, 2007

Why do DLGC_WANTALLKEYS and
DLGC_WANTMESSAGE have the same value?

devblogs.microsoft.com/oldnewthing/20070626-00

Raymond Chen

From a purely theoretical point of view, there is only one “want” code
you really need:

DLGC_WANTMESSAGE .
All the others are just conveniences.
For example,
returning

DLGC_WANTARROWS means
“I want this message if it is an arrow key; otherwise, I don’t care.”

It lets you write

case WM_GETDLGCODE:

return DLGC_WANTARROWS;

instead of the more cumbersome (but equivalent)

case WM_GETDLGCODE:

if (lParam &&

 ((MSG*)lParam)->message == WM_KEYDOWN &&

 (wParam == VK_LEFT || wParam == VK_RIGHT ||

 wParam == VK_UP || wParam == VK_DOWN)) {

 return DLGC_WANTMESSAGE;

}
return 0;

Similarly, DLGC_WANTTAB is equivalent to
returning DLGC_WANTMESSAGE if the message is a

press of the
tab key,
and
 DLGC_WANTCHARS is equivalent to
returning DLGC_WANTMESSAGE

if the message is WM_CHAR .

And that leaves DLGC_WANTALLKEYS ,
which is just another name for DLGC_WANTMESSAGE :

#define DLGC_WANTALLKEYS 0x0004

#define DLGC_WANTMESSAGE 0x0004

They mean the same thing but look at the situation
through different perspectives.
The

DLGC_WANTMESSAGE value is more readable
if you return it as part of some larger decision-

making process,
like we did with our mimicry of DLGC_WANTTAB :
You do a bunch of tests

and then when you decide, “I guess I want
this one,” you return DLGC_WANTMESSAGE .
On the

other hand,
the DLGC_WANTALLKEYS value is more readable
if you are just returning it

unconditionally.
“I want all keys, no matter what it is.”

https://devblogs.microsoft.com/oldnewthing/20070626-00/?p=26263

2/2

It’s like when you’re at the grocery store,
and the bagger asks you,
“Would you like me to help

you carry your watermelon to your car?”
You can say “Yes” or “Always”; the result is the

same.
The only difference is one of expectation: If you expect to
meet the same bagger in the

future, and the bagger remembers,
then “Always” implies “You don’t need to ask me again.”

The dialog manager, on the other hand, doesn’t have that good of a memory,
and in fact, if

you think about it, you don’t want it to have a good
memory.

Suppose the dialog manager remembered whether you said “Always”
and stopped asking you

in the
future.⊶
It sends the WM_GETDLGCODE message to a control,
the control responds

DLGC_WANTALLKEYS ,
and then later, you subclass the control and change the dialog code.

Oops, that doesn’t work because the dialog manager “remembered”
the control’s previous

answer and doesn’t ask any
more.⊷
Naturally, you expect subclassing to work, so the dialog

manager
asks each time.

Continuing the analogy, if you want the bagger to help you if it is
raining but not on a dry

day,
you can either look out the window, confirm that it is not raining,
and say, “Yes”,
or you

can just say, “Yes, if it’s raining,” regardless of the weather,
and let the bagger make the call.

(Of course, the analogy breaks down because the bagger might have a
different assessment

from you as to whether or not it is raining.
The decisions you leave up to the dialog manager,

such as whether a key
is the tab key or not, are much less ambiguous.)

Next time, we’ll look at a dialog manager problem,
and the information you learned today

may come in handy in solving it.

Nitpicker’s corner

⊶Beginning of
counterfactual discussion.*

⊷End of
counterfactual discussion.*

*Warning: Comments complaining about my
choice of footnote symbol will be

misrepresented and ridiculed.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

