
1/3

June 8, 2007

Why does canonical order for ACEs put deny ACEs
ahead of allow ACEs?

devblogs.microsoft.com/oldnewthing/20070608-00

Raymond Chen

So-called canonical order for ACEs in an access control list places deny ACEs ahead of allow

ACEs. Why is this the canonical order?
Because it gives results that are sensible.
The

algorithm for determining whether a user has access to an object protected by an ACL is as

follows:

let access-still-needed = access-requested

for each ACE in the ACL that applies to the user (in order)


    if it is a deny ACE:
        if (access-still-needed & ace-mask) return access-denied


    if it is an allow ACE:

        access-still-needed &= ~ace-mask


end for loop

if access-still-needed != 0 return access-denied


return access-granted

In words, we go through the ACEs in the ACL in the order they appear, paying attention only

to the ones that apply to the user, i.e. the ones whose SIDs are present in the user’s token. If a

permission is being denied, and the user is still looking for that permission, then access is

denied. If a permission is being granted, then those permissions are subtracted from the

permissions the user is still looking for. If, at the end of the day, all the permissions the user

requests have been granted, then access is granted.
The key detail in the above algorithm is

that deny ACEs apply to permissions not yet granted and not to the original set of

permissions requested. If you deny write, but an earlier ACE grants it, then the deny has no

effect.
Let’s look at what happens if we apply this algorithm to an ACL that is not in canonical

order. Our ACL is as follows:

Grant write access to Alice.

Deny read and write access to Users.

Grant read access to Users.

https://devblogs.microsoft.com/oldnewthing/20070608-00/?p=26503


2/3

Let’s say that Alice wants write access. We start with access-still-needed = write, and the first

ACE grants it, leaving access-still-needed equal to zero. The second ACE denies read and

write, but Alice already got write access thanks to the first rule, and she never asked for read

access, so this deny ACE has no effect. The third ACE also has no effect since Alice wasn’t

looking for read access. Result: Alice gets write access.
On the other hand, suppose Alice

wants read access. The first ACE has no effect, since Alice isn’t interested in write access. The

second ACE then denies access since Alice is being denied read access which she hasn’t

gotten yet. Alice’s request is rejected without even looking at the third ACE.
Notice that if the

ACEs are not canonically-ordered, you can’t use a simple rule like “deny ACEs take priority

over allow ACEs”. The rule is “Well, you have to go through each ACE one by one, and you get

access if you get all the things you want before somebody denies them.” It sort of turns into a

game show.
Since graphical ACL editors typically don’t show the order of the ACEs, some sort

of canonical order needs to be established so that you don’t run afoul of this “order of

operations” problem. Notice that in the algorithm above, you can swap two adjacent allow

ACEs and two adjacent deny ACEs without affecting the result, but you cannot swap the

positions of an allow and a deny ACE. Therefore, the canonical ordering must either be “all

deny ACEs come before all allow ACEs” or “all allow ACEs come before all deny ACEs”.
Note,

however, that if you choose to have all allow ACEs come before all deny ACEs, then you don’t

need deny ACEs at all! If you look at the algorithm above, if there is no ACE that mentions

the permission you want, then access is denied. The deny ACEs don’t add anything to the

picture:

// assuming that all allow ACEs come before all deny ACEs

let access-still-needed = access-requested


for each allow ACE in the ACL that applies to the user (in order)

    access-still-needed &= ~ace-mask


end for loop

for each deny ACE in the ACL that applies to the user (in order)


    if (access-still-needed & ace-mask) return access-denied

end for loop


if access-still-needed != 0 return access-denied

return access-granted

Notice that once you make it out of the first “for” loop, the return value is going to be access-

denied if access-still-needed is nonzero. All the deny ACEs give you is another way to say

“no”. But you were going to say “no” anyway.
Therefore, for deny ACEs to be meaningful, the

canonical ordering should place them ahead of allow ACEs. That way, you get three tiers of

permission instead of just two:

If there is a deny ACE, then it is denied.

If there is no deny ACE but there is an allow ACE, then it is allowed.

If there is neither a deny ACE or an allow ACE, then it is denied.



3/3

Postscript: Our sample non-canonical ACL above can easily be converted to an equivalent

canonical one:

Grant write access to Alice.

Why does this work?
Well, first notice that the second rule (“Deny read and write access to

Users”) completely overrides the third rule (“Grant read access to Users”), since any attempt

by the third rule to grant read access to Users will be thwarted by the second rule, which

denies it.

But the second rule itself is unnecessary. We are taking advantage of the test outside the loop

in the access algorithm: if access-still-needed != 0 return access-denied . This

rule means that the default for all access mode is to deny. Therefore, you don’t need to deny

anything explicitly unless you have a broader rule later that grants it. (If you have a more

narrow rule later that grants it, then that narrower rule is pointless, as we saw in the previous

paragraph.) In other words, there’s no point denying read and write to Users since merely not

saying anything is equivalent to a denial.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

