
1/1

June 4, 2007

Choosing a provocative debug signature
devblogs.microsoft.com/oldnewthing/20070604-00

Raymond Chen

Back in Windows 95, there was an elusive heap corruption bug in the graphics engine, and

after a lot of analysis, the graphics folks were convinced that the corruption was coming from

outside their component, and they had a pretty good idea who the corruptor was, but they

needed proof.
One of the standard techniques of narrowing down the source of a problem

like this is to put a signature value in the object and validating the signature on entry to every

function that uses that object as well as on exit. If you find that the signature was valid on

entry but is corrupted on exit, then your function corrupted it. Conversely, if it was valid on

exit but is invalid on a subsequent entry, then somebody else corrupted it. At least that’s the

theory.
The developer who was responsible for investigating the bug decided to use this

“signature value” technique. It is often the case that, for throwaway temporary signatures like

this, you will use your own initials as the signature value. This is partly egotism but mostly

just lack of creativity. But this particular developer had a better idea. Since he had a pretty

good idea which component was corrupting the memory, he used not his own initials, but the

initials of the developer responsible for the component he thought was the corruptor! That

way, when that developer’s component corrupted the signature, it’d just be corrupting his

own initials.
Of course, when the developer of the suspect component saw this check-in, he

felt kind of insulted. After all, his friend just accused him of corrupting memory.

(Epilogue: It turns out that the graphics folks were right. It was that other component that

was corrupting the memory.)

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/20070604-00/?p=26583
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

