
1/2

May 29, 2007

Psychic debugging: Why does FormatMessage say the
resource couldn't be found?

devblogs.microsoft.com/oldnewthing/20070529-00

Raymond Chen

Solving this next problem should be a snap with your
nascent psychic powers:

I’m trying use FormatMessage
to load a resource string with one insertion in it,
and this
doesn’t work for some reason.
The string is
“Blah blah blah %1. Blah blah blah.”
The call to
FormatMessage fails,
and GetLastError() returns
ERROR_RESOURCE_TYPE_NOT_FOUND .
What am I doing wrong?

LPTSTR pszInsertion = TEXT("Sample");

LPTSTR pszResult;

FormatMessage(

 FORMAT_MESSAGE_ALLOCATE_BUFFER |

 FORMAT_MESSAGE_FROM_HMODULE |

 FORMAT_MESSAGE_ARGUMENT_ARRAY,

 //I also tried an instance handle and NULL.

 GetModuleHandle(NULL),

 IDS_MY_CUSTOM_MESSAGE,

 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // default language

 (LPTSTR) &pszResult,

 0,

 (va_list*) &pszInsertion);

Hint: Take a closer look at the parameter
 IDS_MY_CUSTOM_MESSAGE .

Hint 2: What does “ IDS_ ” tell you?

Resource identifiers that begin with “ IDS_ ”
are typically string resource identifiers, not

message resource
identifiers.
There is no strong consensus on the naming convention for

message resource identifiers,
although I’ve seen “ MSG_ “.
Part of the reason why there is no

strong consensus on the naming
convention for message resource identifiers is that almost

nobody
uses message resources!
I don’t understand why they were added to Win32, since

there
was already a way of embedding strings in resources,
namely, string resources.

https://devblogs.microsoft.com/oldnewthing/20070529-00/?p=26663

2/2

That’s why you’re getting ERROR_RESOURCE_TYPE_NOT_FOUND .
There is no message resource

in your module.
If you’re not going to use a message resource, you’ll have to
use the

FORMAT_MESSAGE_FROM_STRING flag and
pass the format string explicitly.

DWORD_PTR rgdwInsertions[1] = { (DWORD_PTR)TEXT("Sample") };

TCHAR szFormat[256];

LoadString(hInstance, IDS_MY_CUSTOM_MESSAGE, szFormat, 256);

LPTSTR pszResult;

FormatMessage(

 FORMAT_MESSAGE_ALLOCATE_BUFFER |

 FORMAT_MESSAGE_FROM_STRING |

 FORMAT_MESSAGE_ARGUMENT_ARRAY,

 szFormat,

 0,

 0,

 (LPTSTR) &pszResult,

 0,

 (va_list*) &rgdwInsertions);

I also made a slight change to the final parameter.
When you use

FORMAT_MESSAGE_ARGUMENT_ARRAY ,
the last parameter must be an array of DWORD_PTR s.

(The parameter must be cast to va_list* to keep
the compiler happy.)
It so happens that

the original code got away with this mistake
since sizeof(DWORD_PTR) ==

sizeof(LPTSTR) and they
both have the same alignment requirements.
On the other hand,

if the insertion were a DWORD ,
passing (va_list*)&dwValue is definitely wrong
and can

crash if you’re sufficiently unlucky.
(Determining the conditions under which your luck runs

out
is left as an exercise.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

