
1/3

May 3, 2007

Quick overview of how processes exit on Windows XP
devblogs.microsoft.com/oldnewthing/20070503-00

Raymond Chen

Exiting is one of the scariest moments in the lifetime of a process. (Sort of how landing is one

of the scariest moments of air travel.)
Many of the details of how processes exit are left

unspecified in Win32, so different Win32 implementations can follow different mechanisms.

For example, Win32s, Windows 95, and Windows NT all shut down processes differently. (I

wouldn’t be surprised if Windows CE uses yet another different mechanism.) Therefore, bear

in mind that what I write in this mini-series is implementation detail and can change at any

time without warning. I’m writing about it because these details can highlight bugs lurking

in your code. In particular, I’m going to discuss the way processes exit on Windows XP.
I

should say up front that I do not agree with many steps in the way processes exit on

Windows XP. The purpose of this mini-series is not to justify the way processes exit but

merely to fill you in on some of the behind-the-scenes activities so you are better-armed

when you have to investigate into a mysterious crash or hang during exit. (Note that I just

refer to it as the way processes exit on Windows XP rather than saying that it is how process

exit is designed. As one of my colleagues put it, “Using the word design to describe this is like

using the term swimming pool to refer to a puddle in your garden.”)
When your program

calls ExitProcess a whole lot of machinery springs into action. First, all the threads in the

process (except the one calling ExitProcess) are forcibly terminated. This dates back to

the old-fashioned theory on how processes should exit: Under the old-fashioned theory,

when your process decides that it’s time to exit, it should already have cleaned up all its

threads. The termination of threads, therefore, is just a safety net to catch the stuff you may

have missed. It doesn’t even wait two seconds first.
Now, we’re not talking happy termination

like ExitThread ; that’s not possible since the thread could be in the middle of doing

something. Injecting a call to ExitThread would result in DLL_THREAD_DETACH

notifications being sent at times the thread was not prepared for. Nope, these threads are

terminated in the style of TerminateThread : Just yank the rug out from under it. Buh-bye.

This is an ex-thread.
Well, that was a pretty drastic move, now, wasn’t it. And all this after the

scary warnings in MSDN that TerminateThread is a bad function that should be avoided!

Wait, it gets worse.
Some of those threads that got forcibly terminated may have owned

critical sections, mutexes, home-grown synchronization primitives (such as spin-locks), all

those things that the one remaining thread might need access to during its

DLL_PROCESS_DETACH handling. Well, mutexes are sort of covered; if you try to enter that

https://devblogs.microsoft.com/oldnewthing/20070503-00/?p=27003
http://blogs.msdn.com/oldnewthing/archive/2007/05/02/2365433.aspx#2375204

2/3

mutex, you’ll get the mysterious WAIT_ABANDONED return code which tells you that “Uh-oh,

things are kind of messed up.”
What about critical sections? There is no “Uh-oh” return value

for critical sections; EnterCriticalSection doesn’t have a return value. Instead, the

kernel just says “Open season on critical sections!” I get the mental image of all the gates in a

parking garage just opening up and letting anybody in and out. [See correction.]
As for the

home-grown stuff, well, you’re on your own.
This means that if your code happened to have

owned a critical section at the time somebody called ExitProcess , the data structure the

critical section is protecting has a good chance of being in an inconsistent state. (Afer all, if it

were consistent, you probably would have exited the critical section! Well, assuming you

entered the critical section because you were updating the structure as opposed to reading it.)

Your DLL_PROCESS_DETACH code runs, enters the critical section, and it succeeds because

“all the gates are up”. Now your DLL_PROCESS_DETACH code starts behaving erratically

because the values in that data structure are inconsistent.
Oh dear, now you have a pretty

ugly mess on your hands.
And if your thread was terminated while it owned a spin-lock or

some other home-grown synchronization object, your DLL_PROCESS_DETACH will most

likely simply hang indefinitely waiting patiently for that terminated thread to release the

spin-lock (which it never will do).
But wait, it gets worse. That critical section might have

been the one that protects the process heap! If one of the threads that got terminated

happened to be in the middle of a heap function like HeapAllocate or LocalFree , then

the process heap may very well be inconsistent. If your DLL_PROCESS_DETACH tries to

allocate or free memory, it may crash due to a corrupted heap.
Moral of the story: If you’re

getting a DLL_PROCESS_DETACH due to process termination,† don’t try anything clever. Just

return without doing anything and let the normal process clean-up happen. The kernel will

close all your open handles to kernel objects. Any memory you allocated will be freed

automatically when the process’s address space is torn down. Just let the process die a quiet

death.
Note that if you were a good boy and cleaned up all the threads in the process before

calling ExitThread , then you’ve escaped all this craziness, since there is nothing to clean

up.
Note also that if you’re getting a DLL_PROCESS_DETACH due to dynamic unloading, then

you do need to clean up your kernel objects and allocated memory because the process is

going to continue running. But on the other hand, in the case of dynamic unloading, no other

threads should be executing code in your DLL anyway (since you’re about to be unloaded), so

—assuming you coded up your DLL correctly—none of your critical sections should be held

and your data structures should be consistent.
Hang on, this disaster isn’t over yet. Even

though the kernel went around terminating all but one thread in the process, that doesn’t

mean that the creation of new threads is blocked. If somebody calls CreateThread in their

DLL_PROCESS_DETACH (as crazy as it sounds), the thread will indeed be created and start

running! But remember, “all the gates are up”, so your critical sections are just window

dressing to make you feel good.
(The ability to create threads after process termination has

begun is not a mistake; it’s intentional and necessary. Thread injection is how the debugger

breaks into a process. If thread injection were not permitted, you wouldn’t be able to debug

process termination!)
Next time, we’ll see how the way process termination takes place on

Windows XP caused not one but two problems.
Footnotes

http://blogs.msdn.com/oldnewthing/archive/2005/09/12/463977.aspx
http://blogs.msdn.com/oldnewthing/archive/2010/01/22/9951750.aspx

3/3

†Everybody reading this article should already know how to determine whether this is the

case. I’m assuming you’re smart. Don’t disappoint me.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

