
1/3

April 27, 2007

Stupid debugger tricks: Calling functions and methods
devblogs.microsoft.com/oldnewthing/20070427-00

Raymond Chen

Back in the old days, if you wanted to call a function from
inside the debugger, you had to do

it by hand:
Save the registers, push the parameters onto the stack
(or into registers if the

function uses fastcall
or thiscall)
push the address of the ntdll!DbgBreakPoint

function,
move the instruction pointer to the start of the function you want to call,
then hit

“g” to resume execution.
The function runs then returns to the ntdll!DbgBreakPoint ,

where the debugger regains control and you can look at the results.
Then restore the registers

(including the original instruction pointer)
and resume debugging.
(That paragraph was just

a quick recap;
I’m assuming you already knew that.)

The Windows symbolic debugger engine (the debugging engine
behind ntsd , cdb and

windbg)
can now automate this process.
Suppose you want to call this function:

int DoSomething(int i, int j);

You can ask the debugger to do all the heavy lifting:

0:001> .call ABC!DoSomething(1,2)

Thread is set up for call, 'g' will execute.

WARNING: This can have serious side-effects,

including deadlocks and corruption of the debuggee.

0:001> r

eax=7ffde000 ebx=00000001 ecx=00000001 edx=00000003 esi=00000004 edi=00000005

eip=10250132 esp=00a7ffbc ebp=00a7fff4 iopl=0 nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000246

ABC!DoSomething:

10250132 55 push ebp

0:001> dd esp

00a7ffbc 00a7ffc8 00000001 00000002 ccfdebcc

Notice that the debugger nicely pushed the parameters onto the stack
and set the eip

register for you.
All you have to do is hit “g” and the DoSomething
function will run.
Once it

returns, the debugger will restore the original state.

This technique even works with C++ methods:

https://devblogs.microsoft.com/oldnewthing/20070427-00/?p=27083

2/3

// pretend that we know that 0x00131320 is an IStream pointer

0:001> .dvalloc 1000

Allocated 1000 bytes starting at 00a80000

0:001> .call ABC!CAlphaStream::Read(0x00131320, 0xa80000, 0x1000, 0)

Thread is set up for call, 'g' will execute.

WARNING: This can have serious side-effects,

including deadlocks and corruption of the debuggee.

Notice that when calling a nonstatic C++ method,
you have to pass the “this” parameter as an

explicit first parameter.
The debugger knows what calling convention to use and puts the

registers
in the correct location.
In this case, it knew that CAlphaStream::Read uses
the

stdcall calling convention, so the parameters have
all been pushed onto the stack.

And what’s with that .dvalloc command?
That’s another debugger helper function that

allocates some memory
in the debugged process’s address space.
Here, we used it to allocate

a buffer that we want to read into.

But what if you want to call a method on an interface, and you
don’t have the source code to

the implementation?
For example, you want to read from a stream that was passed to you

from some external component.
Well, you can play a little trick.
You can pretend to call a

function that you do
have the source code to, one that has the same function signature,
and

then move the eip register to the desired
entry point.

// pretend that we know that 0x00131320 is an IStream pointer

0:000> dp 131320 l1

00131320 77f6b5e8 // vtable

0:000> dps 77f6b5e8 l4

77f6b5e8 77fbff0e SHLWAPI!CFileStream::QueryInterface

77f6b5ec 77fb34ed SHLWAPI!CAssocW2k::AddRef

77f6b5f0 77f6b670 SHLWAPI!CFileStream::Release

77f6b5f4 77f77474 SHLWAPI!CFileStream::Read

0:000> .call SHLWAPI!CFileStream::Read(0x00131320, 0xa80000, 0x1000, 0)

 ^ Symbol not a function in '.call SHLWAPI!CFileStream::Read'

That error message is the debugger’s somewhat confusing way of saying,
“I don’t have

enough information available to make that function call.”
But that’s okay, because we have a

function that’s “close enough”,
namely CAlphaStream::Read :

0:001> .call ABC!CAlphaStream::Read(0x00131320, 0xa80000, 0x1000, 0)

Thread is set up for call, 'g' will execute.

WARNING: This can have serious side-effects,

including deadlocks and corruption of the debuggee.

0:000> r eip=SHLWAPI!CFileStream::Read

0:000> r

eax=00131320 ebx=0007d628 ecx=00130000 edx=0013239e esi=00000000 edi=00000003

eip=77f77474 esp=0007d384 ebp=0007d3b0 iopl=0 nv up ei pl zr na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246

SHLWAPI!CFileStream::Read:

77f77474 8bff mov edi,edi

3/3

Woo-hoo!
We got ABC!CAlphaStream::Read to push all the parameters
for us, and then

whoosh we swap out that function
and slip CFileStream::Read in its place.
Now you can

hit “g” to execute the CFileStream::Read call.

This just skims the surface of what you can do with the
 .call command.
Mix in some C++

expression evaluation and you’ve got yourself
a pretty nifty “pseudo-immediate mode”

expression evaluator.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

