
1/4

April 25, 2007

Identifying an object whose underlying DLL has been
unloaded

devblogs.microsoft.com/oldnewthing/20070425-00

Raymond Chen

Okay, so I gave it away in the title, but follow along anyway.

Your program chugs along and then suddenly it crashes like this:

eax=06bad8e8 ebx=00000000 ecx=1e1cfdf0 edx=00000000 esi=06b9a680 edi=01812950

eip=1180ab57 esp=001178b4 ebp=001178c0 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010206

ABC!FunctionX+0x1f:

1180ab57 ff5108          call    dword ptr [ecx+8]    ds:0023:1e1cfdf8=????????

0:000>>


Instantly you recognize the following:

This is a virtual method call.
(Call indirect through register plus offset.)
— Very high

confidence.

The vtable is in ecx .
(That is the base register of the indirect call.)
— Very high

confidence.

The underlying DLL for this object has been unloaded.
(The memory that contains the

vtable is not valid and its address
is consistent with once having been in valid code.)
—

High confidence.

This is a IUnknown::Release  call.
( Release  is the third function of IUnknown 
and

therefore resides at offset 8 on x86.)
— High confidence.

Of course, all of the above “instant conclusions” are merely
“highly-educated guesses”, but

life is full of highly-educated guesses.
(Every morning, I guess that my plates are still in the

cupboard.)

Let’s run with our theory that the object was in an unloaded DLL
and look for confirmation.

https://devblogs.microsoft.com/oldnewthing/20070425-00/?p=27123


2/4

0:000> lm

start    end        module name

...

Unloaded modules:

10340000 10348000   DEF.DLL

1e1c0000 1e781000   GHI.DLL

25a90000 25a96000   JKL.DLL

0:000>


Aha, our presumed vtable address lies right inside the address space
where GHI.DLL  used

to be loaded.
Let’s see what used to be loaded at that address.
For this, I borrow a trick from

Doron, namely
loading a module as a dump file.
This “virtually loads” the library so you can

poke around inside it.

C:\Program Files\ABC> ntsd -z GHI.DLL

Microsoft (R) Windows Debugger

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Program Files\ABC\GHI.DLL]

...

ModLoad: 15800000 15dc1000   C:\Program Files\ABC\GHI.DLL

eax=00000000 ebx=00000000 ecx=00000000 edx=00000000 esi=00000000 edi=00000000

eip=15807366 esp=00000000 ebp=00000000 iopl=0         nv up di pl nz na pe nc

cs=0000  ss=0000  ds=0000  es=0000  fs=0000  gs=0000             efl=00000000

GHI!_DllMainCRTStartup:

15807366 8bff             mov     edi,edi

0:000>


That module-load notification tells you where the DLL got
virtually-loaded;
in our case, it got

loaded to 0x15800000.
This isn’t the same address as it was in our crashed process,
so we’ll

have to do some mental arithmetic to account for the
discrepancy.

Going back to the original register dump, we see that our
putative vtable is at

ecx=1e1cfdf0  relative
to the load address 1e1c0000 .
Since our DLL-loaded-as-a-dump-

file was loaded at 0x1580000 
we need to adjust the address to be relative to the new

location.

// working with the second copy of ntsd

0:000> ln 0x1580fdf0

(1580fdf0)   GHI!CAlphaStream::`vftable'


That magic number 0x1580fdf0  is just the result of
some mental arithmetic.
First:

0x1e1cfdf0

-0x1e1c0000

0x0000fdf0

http://blogs.msdn.com/doronh/
http://blogs.msdn.com/doronh/archive/2006/03/10/549036.aspx


3/4

This is the address of the vtable in the crashed process
relative to the load address of the DLL

in the crashed process.
Next:

0x15800000

+0x0000fdf0

0x1580fdf0

This is the address of the vtable in the DLL-loaded-as-a-dump-file
relative to the load

address of the DLL in the DLL-loaded-as-a-dump-file.
The math really isn’t that hard, as you

can see, since a lot of things
cancel out.
This happens a lot.

When we asked the debugger to tell us what symbol is nearest to that
address, we hit the

jackpot: It is exactly a vtable for the
 CAlphaStream  object.
This confirms our original

theory.
We can even confirm the IUnknown::Release  theory
by dumping the vtable.

0:000> dds 1580fdf0

1580fdf0  159234b3 GHI!CAlphaStream::QueryInterface

1580fdf4  15810539 GHI!CBetaState::AddRef

1580fdf8  15923cfc GHI!CAlphaStream::Release

1580fdfc  15923d30 GHI!CAlphaStream::Read

...


Yup, that’s a CAlphaStream  vtable all right.

Since I’m not familiar with the GHI.DLL  file,
let’s ask the debugger where the source code is

so we can take a closer
look:

0:000> .lines

Line number information will be loaded

0:000> dds 1580fdf0

1580fdf0  159234b3 GHI!CAlphaStream::QueryInterface

                  [c:\dev\fabricam\synergy\proactive\winwin.cpp @ 2624]

1580fdf4  15810539 GHI!CBetaState::AddRef

                  [c:\dev\fabricam\leverage\paradigm\initiative.cpp @ 427]

1580fdf8  15923cfc GHI!CAlphaStream::Release

                  [c:\dev\fabricam\synergy\proactive\winwin.cpp @ 2638]

1580fdfc  15923d30 GHI!CAlphaStream::Read

                  [c:\dev\fabricam\synergy\proactive\winwin.cpp @ 2649]


Now that we know where the source code to
 CAlphaStream  is, we can hop on over to take a

quick peek
and confirm that, oh look, the object doesn’t increment the DLL object
count

when it is constructed (or decrement it when it is destructed).
As a result, when COM calls

DllCanUnloadNow , the
 GHI.DLL  says, “Sure, go ahead!”
The DLL is unloaded even though

ABC  still has a reference
to it, and then when ABC  goes to release that reference,
we crash

because GHI  is already gone.

http://blogs.msdn.com/oldnewthing/archive/2005/03/22/400373.aspx


4/4

After I wrote this up, I discovered that
Tony Schreiner
went through pretty much
the same

exercise
with a third-party Internet Explorer toolbar,
except he had the extra bonus challenge

of not having source code
for the plug-in!

Raymond Chen

Follow







http://blogs.msdn.com/tonyschr/
http://blogs.msdn.com/tonyschr/archive/2006/01/09/511029.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

