
1/3

April 24, 2007

What is the underlying object behind a COM interface
pointer?

devblogs.microsoft.com/oldnewthing/20070424-00

Raymond Chen

When you’re debugging,
you might have a pointer to a COM interface and want to know
what

the underlying object is.
Now, sometimes this trick won’t work because the interface pointer

actually points to a stub or proxy,
but in the case where no marshalling is involved, it works

great.
(This technique also works for many C++ compilers for
any object that has virtual

methods and therefore a vtable.)

Recall that
the layout of a COM object requires that the
pointer to a COM interface point to

the object’s vtable,
and it’s the vtable that is the key.

0:000> dv

 pstm = 0x000c7568

0:000> dt psf

Local var @ 0x7cc2c Type IStream*

0x000c7568

 +0x000 __VFN_table : 0x1c9c8e84

Okay, so far all we know is that our IStream *
lives at 0x000c7568 and its vtable is

0x1c9c8e84 .
Whose stream implementation is it?

0:000> ln 0x1c9c8e84

(1c9c8e84) ABC!CAlphaStream::`vftable'

Aha, it’s a CAlphaStream from ABC.DLL .
Let’s take a look at it:

0:000> dt ABC!CAlphaStream 0x000c7568

 +0x000 __VFN_table : 0x1c9c8e84 // our vtable

 +0x004 m_cRef : 480022128

 +0x008 lpVtbl : 0x1c9d2d30

 +0x00c lpVtbl : 0x00000014

 +0x010 m_pszName : 0x000c7844 "??????????"

 +0x014 m_dwFlags : 0x3b8

 +0x018 m_pBuffer : 0x00000005

 +0x01c m_cbBuffer : 705235565

 +0x020 m_cbPos : 2031674

https://devblogs.microsoft.com/oldnewthing/20070424-00/?p=27143
http://blogs.msdn.com/oldnewthing/archive/2004/02/05/68017.aspx

2/3

“Hey, how did you get the debugger to dump m_pszName
as a string?”
If you issue the

.enable_unicode 1 command,
then the debugger will treat pointers to unsigned short

as if they were pointers to Unicode strings.
(By default, only pointers to wchar_t are

treated
as pointers to Unicode strings.)

Okay, back to the structure dump.
It doesn’t look right at all.
The reference count is some

absurd value,
the vtable at offset 0x00c is a bogus pointer,
the name in m_pszName is

garbage,
pretty much every field aside from the initial vtable and
the vtable at offset 0x008

is blatantly wrong.

What happened?
Well, clearly we were given a “ q ” pointer;
i.e., a pointer to one of the

vtables other than the first one.
We have to adjust the pointer so it points to the start of the

object instead of the middle.

How do we do this adjustment?
There’s the methodical way and the quick-and-dirty way.

The methodical way is to use the
adjustor thunks
to tell you how much the pointer needs to

be adjusted
in order to move from a secondary vtable to the primary one.
(This assumes that

the primary IUnknown implementation
is the first base class.
This is not guaranteed to be

the case but it usually is.)

0:000> dps 1c9c8e84 l1

1c9c8e84 1c9eb08e ABC![thunk]:CAlphaStream::QueryInterface`adjustor{8}'

Aha, this adjustors adjust by eight bytes, so we just need to subtract
eight from our pointer to

get the object’s starting address.

0:000> dt ABC!CAlphaStream 0x000c7560-8

 +0x000 __VFN_table : 0x1c9c8ee8

 +0x004 m_cRef : 2

 +0x008 lpVtbl : 0x1c9c8e84

 +0x00c lpVtbl : 0x1c9c8e70

 +0x010 m_pszName : 0x1c9d2d30 "Scramble"

 +0x014 m_dwFlags : 0x14

 +0x018 m_pBuffer : 0x000c7844

 +0x01c m_cbBuffer : 952

 +0x020 m_cbPos : 5

Ah, that looks much nicer.
Notice that the reference count is a more reasonable value of two,

the name pointer looks good,
the buffer size and position appear to be much more realistic.

Now, I don’t bother with the whole adjustor thunk thing.
Instead I rely on the principle of

“Assume it’s mostly correct“:
Assume that the object is not corrupted and just adjust the

pointer by
eye until the fields line up.
Let’s take another look at the original (bad) dump:

http://blogs.msdn.com/oldnewthing/archive/2004/02/06/68695.aspx
http://blogs.msdn.com/oldnewthing/archive/2007/04/23/2215961.aspx

3/3

0:000> dt ABC!CAlphaStream 0x000c7568

 +0x000 __VFN_table : 0x1c9c8e84

 +0x004 m_cRef : 480022128

 +0x008 lpVtbl : 0x1c9d2d30

 +0x00c lpVtbl : 0x00000014

 +0x010 m_pszName : 0x000c7844 "??????????"

 +0x014 m_dwFlags : 0x3b8

 +0x018 m_pBuffer : 0x00000005

 +0x01c m_cbBuffer : 705235565

 +0x020 m_cbPos : 2031674

This obviously doesn’t smell right, but what do we have to do
to get things to line up?
Well,

we know that the vtable we have must go into one of the
other two vtable slots, either the one

at offset 0x008
or the one at offset 0x00c .
If we moved it to offset 0x00c ,
then that

would move the 0x00000014 currently at
offset 0x00c down twelve bytes, placing it at

offset 0x018 , right at m_pBuffer .
But obviously 0x00000014 is not a valid buffer

pointer, so 0x00c can’t be the correct adjustment.
On the other hand, if we put our vtable at

offset 0x008 ,
then that would move 0x000c7844 into the
 m_pBuffer position, which is

not too unreasonable.
Therefore, I would guess that the adjustor is eight,
yielding the same

structure dump that we got by dumping the
vtable to see the adjustor.

In real life, I tend to pay attention to the vtables, the
reference count,
and any string

members because it’s usually pretty easy to see
whether you got them right.
(Vtables reside in

code.
Reference counts tend to be small integers.
Strings are, well, strings.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

