
1/2

April 23, 2007

Psychic debugging: When reading unfamiliar code,
assume it's mostly correct

devblogs.microsoft.com/oldnewthing/20070423-00

Raymond Chen

You may be called in to study a problem in code you’ve never seen before
or be asked to look

over a proposed change to some code you’ve never
seen before.
When this happens, you have

to take shortcuts in your analysis
because following every function call to the bottom would

not only
take far too much time,
but also take you so far away from the code in question
that

you will probably forget what you were looking for in the
first place.

For example, suppose you’re looking at some code that goes
like this:

...

Gizmo *gizmo = get_gizmo_from_name(name);

if (gizmo) {

Gizmo *parent = gizmo->get_parent();

parent->set_height(newheight);

...

}

You might have some questions about this code.

What if name is NULL ?
Is it legal to pass NULL to get_gizmo_from_name ?

What if the gizmo doesn’t have a parent?
Is there a potential NULL pointer

dereference here?

Are the gizmo and parent reference-counted?
Did we need to do something like

gizmo->Release() or a
 parent->Release() to keep the reference counts
in

balance and avoid a memory leak?

Finding the answers to these questions may take some time.
For example, you might have

access only to the diff and not
to the entire project,
or a grep for the definition of

get_gizmo_from_name in the same directory that has
the function in question doesn’t turn

up anything
and you have to expand your search wider and wider
in an attempt to find it.

This is when you invoke the “Assume it’s mostly correct” heuristic.
The theory behind this

heuristic is that whoever wrote this code
has a better understanding of how it works than you

do.
(This is a pretty safe bet
since your knowledge of this code is approximately zero.)
The

https://devblogs.microsoft.com/oldnewthing/20070423-00/?p=27163

2/2

problem you’re looking for is probably some small detail,
an edge case, a peculiar

combination of circumstances.
You can assume that the common case is pretty solid;
if the

common case were also broken,
the problem would be so obvious that they wouldn’t need to

ask
an outsider for help.

Therefore, look at the other parts of the code.
For example, you might find a code fragment

nearby like this one:

// rename the gizmo

Gizmo *gizmo = get_gizmo_from_name(oldname);

if (gizmo) {

 gizmo->set_name(newname);

}

That already answers two of your questions.
First, you don’t have to worry about checking the

name
against NULL because this code fragment doesn’t check,
and by the heuristic, the code

is mostly correct.
Therefore, NULL is most likely an acceptable parameter
for the

get_gizmo_from_name function.
Because if it weren’t, then that code would be broken too!

(This is sort of the counterexample to what Mom always told you:
If everybody else jumped

off a bridge,
then it is probably okay to jump off bridges.)

Second, this code doesn’t do anything special when it’s done
with the gizmo so it’s probably

okay just to abandon
the gizmo without need to do any special reference
count

management.
Because if you had to dispose of it in a special way,
then that code would be

broken too!

Now, of course, this heuristic can be fooled,
but if you’re operating with only partial

information,
it’s often the best you can do.
Get it right often enough and people will believe

that you too
have psychic debugging powers.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

