
1/2

April 17, 2007

The Notepad file encoding problem, redux
devblogs.microsoft.com/oldnewthing/20070417-00

Raymond Chen

About every ten months,
somebody new discovers
the Notepad file encoding problem.
Let’s

see what else there is to say about it.

First of all, can we change Notepad’s detection algorithm?
The problem is that there are a lot

of different text files out there.
Let’s look just at the ones that Notepad supports.

8-bit ANSI (of which 7-bit ASCII is a subset).
These have no BOM; they just dive right

in with bytes of text.
They are also probably the most common type of text file.

UTF-8.
These usually begin with a BOM but not always.

Unicode big-endian (UTF-16BE).
These usually begin with a BOM but not always.

Unicode little-endian (UTF-16LE).
These usually begin with a BOM but not always.

If a BOM is found, then life is easy, since the BOM tells you
what encoding the file uses.
The

problem is when there is no BOM.
Now you have to guess, and when you guess, you can

guess wrong.
For example, consider this file:

D0 AE


Depending on which encoding you assume, you get very different results.

If you assume 8-bit ANSI (with code page 1252),
then the file consists of the two

characters
 U+00D0 U+00AE , or
“Ð®”.
Sure this looks strange, but maybe it’s part of

the word
VATNIÐ® which might be the name of an Icelandic hotel.

If you assume UTF-8,
then the file consists of the single Cyrillic character
 U+042E , or

“Ю”.

If you assume Unicode big-endian, then the file consists of the
Korean Hangul syllable

U+D0AE , or
“킮”.

If you assume Unicode little-endian, then the file consists of
the Korean Hangul syllable

U+AED0 , or
“껐”.

Okay, so this file can be interpreted in four different ways.
Are you going to use the “try to

guess” algorithm from
 IsTextUnicode ?
(Michael Kaplan has some thoughts on this

subject.)
If so, then you are right where Notepad is today.
Notice that all four interpretations

https://devblogs.microsoft.com/oldnewthing/20070417-00/?p=27223
http://blogs.msdn.com/oldnewthing/archive/2004/03/24/95235.aspx
http://blogs.msdn.com/michkap/archive/2005/01/30/363308.aspx


2/2

are linguistically plausible.

Some people might say that the rule should be “All files without
a BOM are 8-bit ANSI.”
In

that case, you’re going to misinterpret all the files
that use UTF-8 or UTF-16 and don’t have a

BOM.
Note that the Unicode standard even advises against
using a BOM for UTF-8,
so

you’re already throwing out everybody who follows the
recommendation.

Okay, given that the Unicode folks recommend against using a BOM for
UTF-8, maybe your

rule is “All files without a BOM are UTF-8.”
Well, that messes up all 8-bit ANSI files that use

characters
above 127.

Maybe you’re willing to accept that ambiguity, and use the
rule, “If the file looks like valid

UTF-8, then use UTF-8;
otherwise use 8-bit ANSI, but under no circumstances should you

treat the file as UTF-16LE or UTF-16BE.”
In other words, “never auto-detect UTF-16”.
First,

you still have ambiguous cases, like the file above,
which could be either 8-bit ANSI or UTF-

8.
And second, you are going to be flat-out wrong when
you run into a Unicode file that
lacks

a BOM, since you’re going to misinterpret it as either
UTF-8 or (more likely) 8-bit ANSI.
You

might decide that programs that generate UTF-16 files without
a BOM are broken, but that

doesn’t mean that they don’t exist.
For example,

cmd /u /c dir >results.txt


This generates a UTF-16LE file without a BOM.
If you poke around your Windows directory,

you’ll probably
find other Unicode files without a BOM.
(For example, I found COM+.log .)

These files still “worked” under the old IsTextUnicode 
algorithm, but now they are

unreadable.
Maybe you consider that an acceptable loss.

The point is that no matter how you decide to resolve the ambiguity,
somebody will win and

somebody else will lose.
And then people can start experimenting with the “losers” to find

one that makes your algorithm look stupid for choosing “incorrectly”.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

