
1/2

April 12, 2007

What is the default version of the shell common
controls?

devblogs.microsoft.com/oldnewthing/20070412-00

Raymond Chen

It depends on what you mean by default.
As we saw earlier, the convention for Windows

header files is that if you don’t specify a particular version, then you get the most recent

version. The shell common controls header file follows this convention, so if you include the

Windows XP version of commctrl.h , you get functions, messages, and structures designed

for use with version 6 of the common controls. (And functions, messages, and structures may

not work with version 5 of the shell common controls due to changes in structure sizes, for

example.) So from the Windows XP Platform SDK header file’s point of view, the default

version of the shell common controls is version 6.
On the other hand, there’s the question of

what version of the shell common controls you actually get at run time. Prior to Windows XP,

the answer was simple: You got the most recent version installed on the machine.
With

Windows XP, however, the rules changed. The visuals team wanted to do something more

ambitious with the common controls, but the compatibility constraints also created

significant risk. The solution was to use side-by-side assemblies.
For compatibility, if a

program didn’t specify what version of the shell common controls it wanted, it got version

5.82, which was carefully designed for extremely high compatibility with the previous

version, 5.81, which came with Windows 2000 and Windows Me. Now, version 5.82 is not

completely identical to 5.81, because it also needs to interoperate with version 6. More on

this later.
If a program wanted to use version 6 of the common controls, it had to say so

explicitly in a manifest. (What we on the shell team informally call a “v6 manifest”.) That

way, only programs that asked for the new behavior got it. The theory being that if you asked

for the new behavior, you presumably tested your program against version 6 of the common

controls to verify that it behaves as you expected. This freed up the visuals team to make

more substantial changes to the common controls without having to worry about some old

program that relied on some strange undocumented behavior of the common controls. That

old program would get version 5.82, which was designed for high compatibility.
Now, on that

interoperability thing. There are places where the common controls library creates an object

which you can then use with other common controls. For example, you can create an image

list with ImageList_Create and then use that image list in a list view or tree view. Care

had to be taken so that an image list created by version 5 of the common controls (a “v5

image list”) could be used by a list view created by version 6 (a “v6 list view”), or conversely

https://devblogs.microsoft.com/oldnewthing/20070412-00/?p=27263
http://blogs.msdn.com/oldnewthing/archive/2007/04/10/2065725.aspx
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/userex/cookbook.asp

2/2

that a v6 image list could be used in a v5 list view. This sort of cross-version image list usage

is actually quite common: Any application that calls Shell_GetImageLists (or its old-

fashioned equivalent, SHGetFileInfo with the SHGFI_SYSICONINDEX flag) will get a v6

image list. If that application uses version 5 of the common controls (because it doesn’t have

a v6 manifest), then it will find itself using a v6 image list inside a v5 list view. Since each

DLL has its own manifest, you can quickly find yourself in a case where there is a hodgepodge

of v5 and v6 components all inside a single process, and they all have to work with each

other.
Another example of this cross-version interoperability is the HPROPSHEETPAGE .

Property sheet pages created with CreatePropSheetPage from one version of the shell

common controls had to work with the PropertySheet function of the other version. This

happens a lot with shell property sheet extensions. The shell namespace will ask the shell

extensions to provide their custom property sheets, and all the ones written for

Windows 2000 will hand back a v5 HPROPSHEETPAGE . But Explorer is going to display that

property sheet with the v6 PropertySheet function. That v5 property sheet page had better

work even when hosted inside a v6 property sheet.

Okay, but back to the original problem. If you don’t specify what version of the header file

you want, then you get the latest version (version 6 if you got the header file from the

Windows XP Platform SDK). On the other hand, if you don’t specify what version of the DLL

you want, you get version 5.82, the compatible version of the DLL. Yes, this is a mismatch.

Be on the lookout. This is what happens when a header file convention is at odds with a

compatibility decision.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

