
1/2

April 3, 2007

Why does my thread pool use only one thread?
devblogs.microsoft.com/oldnewthing/20070403-00

Raymond Chen

The thread pool is about reducing thread creating/termination
overhead by consolidating

work that would normally go onto separate
threads into a small number of threads.
In a

sense, you shouldn’t be surprised that the thread pool is using
only one thread; instead, you

should be happy!

I switched to using the thread pool, and I’m finding that it’s
using only one thread.
To
demonstrate this, I wrote a test program that fires off a bunch
of “work items” into the thread
pool via
 QueueUserWorkItem .
Each work item does some intensive computations.
What
I’m seeing is that they are all running serially on a single
thread instead of running in parallel.
Since I have a dual-processor machine, this leaves half of
the computing capacity unutilized.
If
I create a separate thread for each “work item”,
then I get (not surprising) multiple threads and
100% CPU utilization.
Why does my thread pool use only one thread?

The purpose of the thread pool, as I noted above, was to reduce
the overhead of creating and

terminating threads by running
multiple tasks on a thread.
For example, suppose you have

three short tasks, say 1ms each.
If you put each one on its own thread, you have

Task1.CreateThread,
Task1.Run,
Task1.EndThread

Task2.CreateThread,
Task2.Run,
Task2.EndThread

Task3.CreateThread,
Task3.Run,
Task3.EndThread

Now suppose, for the purpose of this discussion, that creating
and terminating a thread take

1ms each.
if you create a separate thread for each task, you’ve spent
6ms on thread overhead

and only 3ms doing actual work.

What if we could run multiple tasks on a single thread?
That way, the cost of creating and

terminating the thread
could be amortized over all the tasks.

ThreadPool.CreateThread,
Task1.Run,
Task2.Run,
Task3.Run,
ThreadPool.EndThread

Ah, now we have only 2ms of overhead for 3ms of work.
Not great, but certainly better than

what we had before.
If we can pack more tasks into the thread pool,
the fixed overhead of

creating and terminating the thread
becomes proportionally less.

https://devblogs.microsoft.com/oldnewthing/20070403-00/?p=27393


2/2

The thread pool is designed for handling a collection of
brief tasks, since those are the tasks

that would best benefit
from thread pooling.
If you had a task that ran for ten seconds,

putting it on
the thread pool wouldn’t yield much in the way of savings;
that 2ms overhead

you avoided is just noise compared to your
ten seconds of running time.
(Last year, we saw

another case of a series of tasks ill-suited to thread pooling.)

As an accommodation for people who will put the occasional
long-running task onto the

thread pool (perhaps because it
simplifies the program logic by treating everything as a
work

item), the thread pool allows you to give it a heads-up
by
passing the

WT_EXECUTELONGFUNCTION flag.
But that’s not really what the thread pool is for.
It’s for

quick-running tasks for which the overhead of creating
a separate thread would be

disproportionate to the work
done by the task itself.

Raymond Chen

Follow







http://blogs.msdn.com/oldnewthing/archive/2006/03/14/551140.aspx#551339
http://blogs.msdn.com/oldnewthing/archive/2005/07/22/441785.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

