
1/3

April 2, 2007

Why do operating system files still adhere to the old 8.3
naming convention?

devblogs.microsoft.com/oldnewthing/20070402-00

Raymond Chen

Commenter
Brian Reiter
asks a duplicate of a
question that was already submitted to the

Suggestion Box:
Darren asks
why operating system† files still (for the most part)
adhere to

the old 8.3 naming convention.

There are a few reasons I can think of.
I’m not saying that these are the reasons;
I’m just

brainstorming.

First, of course, the name of a DLL cannot change once it has been
chosen, because that

would break programs which linked to that DLL
by its old name.
Windows 95 did not require

the system volume and user profile
volume to support long file names, although that was

certainly the
case by default.
Companies which used
roaming profiles
or
redirected folders

may have had a heavy investment in servers which did not support
long file names.

Therefore, all system files on Windows 95 had to conform to the
8.3 naming convention.

I believe that
Windows NT permitted the system volume to be a short-file-names-only
FAT

partition as late as Windows 2000.
Therefore, any DLL that existed in the Windows 2000 era

had to conform to the 8.3 naming convention.

Starting in Windows XP, long file names became mandatory,
and a few system files
such as

shellstyle.dll
waded tentatively into the long file name world.
(The .NET Framework

folks jumped in with both feet with their managed
DLLs, but notice that their unmanaged

DLLs like
 mscoree.dll still conform to 8.3.)
But the waters in this world can be

treacherous for operating
system components.

First of all, you have to worry about the automatically-generated
short name.
Suppose the

operating system setup program is copying the
 shellstyle.dll file, but there is already a

file
called shellstuff.dll .
The short name for shellstuff.dll will probably be

SHELLS~1.DLL ,
and therefore the short name for
 shellstyle.dll will likely be

SHELLS~2.DLL .
Now, this may not be a big deal, except that some programs
like to hard-

code a file’s short name.
(There are a lot of programs that assume that the Program Files

directory is C:\PROGRA~1, for example.)

https://devblogs.microsoft.com/oldnewthing/20070402-00/?p=27413
http://blogs.msdn.com/oldnewthing/archive/2006/04/12/574927.aspx#574976
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#416908
http://blogs.msdn.com/oldnewthing/archive/2005/06/30/434209.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/02/06/525700.aspx

2/3

Furthermore, you can create confusion if the same DLL is loaded
by both its short and long

names, since the loader treats them as
distinct:

#include <stdio.h>

#include <windows.h>

int __cdecl main(int argc, char **argv)

{

printf("%p\n", LoadLibrary("SHELLS~1.DLL"));

printf("%p\n", LoadLibrary("SHELLSTYLE.DLL"));

return 0;

}

If you run this program, you will get something like this:

6F2C0000

00340000

Even though the two paths refer to the same DLL,
the loader treats them as different, and

you end up with two
copies of the same DLL loaded into memory.
Now things get confusing,

since you now have two sets of
global variables, and if two components both use

SHELLSTYLE.DLL but one used the short name and
the other the long name, things get

exciting when those two
components try to talk about what they think is the same thing.

It’s like that time when I was a child and our family
took a trip to Disneyland.
Our parents

put my brother and me on the gondola ride,
and upon arrival at the other end, we were to go

to the
Autopia ride which was right next door.
The plan was that our parents would meet us

at the exit to
Autopia.
When my brother and I exited Autopia, we expected our parents to
be

waiting there for us, but they were nowhere to be seen.
Sticking to the plan, we waited

patiently for our parents to arrive.
We sat there for what seemed like two hours
(but which

was probably much less),
until eventually
we decided that my brother would stay put and I

would go looking around,
at which point it didn’t take long for me to find my father,
who was

walking around looking for us.

What went wrong?
Well, the problem was that the map of Disneyland showed Autopia,
but

what the map didn’t say was that there were two
Autopia rides (and therefore two Autopia

exits) right next to each other.
My brother and I were waiting by one exit, and our parents

were waiting by the other.
Each of us thought the other party was simply late.

Similarly, if a DLL goes by multiple names, you can end up with two
copies of it loaded into

the process, with different components talking
about different copies, unaware that they are

talking about different
things.

And one final reason I can think of for sticking with 8.3 file names
for operating system DLLs

is simply,
“Well, that’s the way we’ve always done it.
All the problems with 8.3 names are

well-understood and under control.
If we switched to long file names, we’d end up

3/3

discovering a whole
new set of problems.
Why mess with something that works if it isn’t

broken?”

Better the devil you know.

Exercise: Why is it okay for the .NET Framework to use long
file names for their managed

DLLs?

Nitpicker’s Corner

†s/operating system/Windows operating system/.
Apparently nothing is obvious from

context any more.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

