
1/3

March 26, 2007

Passing by address versus passing by reference, a
puzzle

devblogs.microsoft.com/oldnewthing/20070326-00

Raymond Chen

Commenter Mike Petry asked via the Suggestion Box:

Why can you dereference a COM interface pointer and pass it
to a function with a Com
interface reference.

The call.

OutputDebugString(_T("IntfByRef::Execute - Begin\n"));

BadBoy badone;

CComPtr<IDoer> Doer;

Doer.CoCreateInstance(CLSID_Doer, NULL, CLSCTX_INPROC_SERVER);

// created a raw pointer - maybe the

// smart pointer was effecting it some how.

IDoer* Doer2;

Doer.CopyTo(&Doer2);

badone.stupid_method(*Doer2);

Doer2->Release();

// no still works.

The function called.

void stupid_method(IDoer& IDoerRef)

{

IDoerRef.Do();

CComQIPtr<IDispatch> WatchIt(&IDoerRef);

if(WatchIt)

 OutputDebugString(_T("QI the address of the ")

 _T("ref works - this is weird\n"));

else

 OutputDebugString(_T("At least trying to QI the ")

 _T("address of the ref fails\n"));

}

I found some code written like this during a code review.
It is wrong but it seems to work.

https://devblogs.microsoft.com/oldnewthing/20070326-00/?p=27503
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#410239

2/3

You already know the answer to this question.
You merely got distracted by the use of a COM

interface.
Let me rephrase the question, using an abstract C++ class
instead of a COM

interface.
(The virtualness isn’t important to the discussion.)
Given this code:

class Doer {

public: virtual void Do() = 0;

};
void caller(Doer *p)

{

stupid_method(*p);

}

void stupid_method(Doer& ref)

{

ref.Do();

}

How is this different from the pointer version?

void caller2(Doer *p)

{

stupid_method2(p);

}

void stupid_method2(Doer *p)

{

p->Do();

}

The answer:
From the compiler’s point of view, it’s the same.
I could prove this by going into

what references mean,
but you’d just find that boring,
but instead I’ll show you the generated

code.
First, the version that passes by reference:

; void caller(Doer *p) { stupid_method(*p); }

 00000 55 push ebp

 00001 8b ec mov ebp, esp

 00003 ff 75 08 push DWORD PTR _p$[ebp]

 00006 e8 00 00 00 00 call stupid_method

 0000b 5d pop ebp

 0000c c2 04 00 ret 4

; void stupid_method(Doer& ref) { ref.Do(); }

 00000 55 push ebp

 00001 8b ec mov ebp, esp

 00003 8b 4d 08 mov ecx, DWORD PTR _ref$[ebp]

 00006 8b 01 mov eax, DWORD PTR [ecx]

 00008 ff 10 call DWORD PTR [eax]

 0000a 5d pop ebp

 0000b c2 04 00 ret 4

Now the version that passes by address:

3/3

; void caller2(Doer *p) { stupid_method2(p); }

 00000 55 push ebp

 00001 8b ec mov ebp, esp

 00003 ff 75 08 push DWORD PTR _p$[ebp]

 00006 e8 00 00 00 00 call stupid_method2

 0000b 5d pop ebp

 0000c c2 04 00 ret 4

; void stupid_method2(Doer *p) { p->Do(); }

 00000 55 push ebp

 00001 8b ec mov ebp, esp

 00003 8b 4d 08 mov ecx, DWORD PTR _p$[ebp]

 00006 8b 01 mov eax, DWORD PTR [ecx]

 00008 ff 10 call DWORD PTR [eax]

 0000a 5d pop ebp

 0000b c2 04 00 ret 4

Notice that the code generation is identical.

If you’re still baffled, go ask your local C++ expert.

Mind you, dereferencing an abstract object is highly unusual
and will probably cause the

people who read your code to
scratch their heads, but it is nevertheless technically legal,
in

the same way it is technically legal to give a function
that deletes an item the name

add_item .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

