
1/5

March 23, 2007

Excursions in composition: Adding rewind support to a
sequential stream

devblogs.microsoft.com/oldnewthing/20070323-00

Raymond Chen

Here’s a problem “inspired by actual events”:

I have a sequential stream
that is the response to a request I sent to a web site.
The format of the
stream is rather messy; it comes with a
variable-length header that describes what type of data is
being returned.
I want to read that header and then
hand the stream to an appropriate handler.
But the handlers expect to be given the stream in its entirety,
including the bytes that I have
already read.
Since this is a sequential stream,
I can’t change the seek position.
How can I
“unread” the data and give the handlers what they want?

Right now, I’m just closing the stream I get and issuing a second request.
I give that second
stream to the handler that I determined by
parsing the first stream.
Of course, this makes the
rather unsafe assumption that
the server will send the same data stream back the
second time,
and I’m issuing twice as many
requests as I really need.

I tried reading the entire stream into memory and creating
a new stream on that, but the data
stream can be very big,
and I feel bad allocating all that memory just so I can
“unread” a few
dozen bytes.

All the customer wants here is to be able to “unread” some bytes
from a stream.
This is a

perfect job for our
composite sequential stream.
The first stream consists of the bytes we

want to push back,
and the second stream is the rest of the stream.
Here’s an explanation in

pictures.
The pink stream is the original stream returned from the web site,
and the green

stream remembers the bytes we want to push back.

Initial state:

 ABCDEFGHIJK…

After reading a few bytes:

https://devblogs.microsoft.com/oldnewthing/20070323-00/?p=27523
http://blogs.msdn.com/oldnewthing/archive/2007/03/22/1927891.aspx

2/5

 ABCD EFGHIJK…

After reading a few more bytes:

 ABCDEFG HIJK…

Finally, we have determined the handler, but the handler expects
to start reading from the

“A”, so we will take these two streams
and concatenate them so they look like
one stream

again:

 ABCDEFG HIJK…

Okay, let’s do it.
All we have to worry about is filling the green stream
with the bytes that we

read out of the pink stream;
we’re going to use
 CConcatStream to do the composition at the

end.

3/5

class CRewindStream : public CROSequentialStreamBase

{

public:

CRewindStream(ISequentialStream *pstm);

ISequentialStream *Rewind();

// *** ISequentialStream ***

STDMETHODIMP Read(void *pv, ULONG cb, ULONG *pcbRead);

protected:

~CRewindStream();

bool m_fRewound;

IStream *m_pstm1;

ISequentialStream *m_pstm2;

};
CRewindStream::CRewindStream(ISequentialStream *pstm)

: m_fRewound(false), m_pstm2(pstm)

{

CreateStreamOnHGlobal(NULL, TRUE, &m_pstm1);

m_pstm2->AddRef();

}

CRewindStream::~CRewindStream()

{

if (m_pstm1) m_pstm1->Release();

m_pstm2->Release();

}

HRESULT CRewindStream::Read(void *pv, ULONG cb, ULONG *pcbRead)

{

ULONG cbRead = 0;

HRESULT hr;

if (m_fRewound) {

 hr = E_FAIL;

} else if (!m_pstm1) {

 hr = E_OUTOFMEMORY;

} else {

 hr = m_pstm2->Read(pv, cb, &cbRead);

 if (SUCCEEDED(hr)) {

 hr = m_pstm1->Write(pv, cbRead, NULL);

 }

}
if (pcbRead) *pcbRead = cbRead;

return hr;

}

ISequentialStream *CRewindStream::Rewind()

{

if (!m_pstm1 || m_fRewound) return NULL;

m_fRewound = true;

const LARGE_INTEGER li0 = { 0, 0 };

m_pstm1->Seek(li0, STREAM_SEEK_SET, NULL);

return new CConcatStream(m_pstm1, m_pstm2);

}

4/5

Our RewindStream takes a sequential stream
and creates a memory stream via

CreateStreamOnHGlobal
to remember the parts that we read so we can stick them back

when it’s time to rewind.

When reading from the stream, we read from the sequential stream
and append the result to

the memory stream before returning it.
In this manner, each byte read from the head of the

pink stream
gets appended to the end of the green stream.

When it’s time to rewind, we seek the memory stream back to the
beginning and create a

concatenated stream out of the memory
stream and the unread portion of the sequential

stream.

Here’s a simple program that illustrates our new rewindable sequential
stream:

int __cdecl _tmain(int argc, TCHAR **argv)

{

CoInitialize(NULL);

IStream *pstmFile;

if (SUCCEEDED(SHCreateStreamOnFile(argv[1], STGM_READ,

 &pstmFile))) {

 CRewindStream *pstmRewind = new CRewindStream(pstmFile);

 if (pstmRewind) {

 char ch;

 ULONG cb;

 while (SUCCEEDED(pstmRewind->Read(&ch, 1, &cb)) && cb) {

 printf("Header: '%c'\n", ch);

 if (ch == ' ') {

 ISequentialStream *pstmRewound = pstmRewind->Rewind();

 if (pstmRewound) {

 PrintStream(pstmRewound);

 pstmRewound->Release();

 }

 break;

 }

 }

 pstmRewind->Release();

 }

 pstmFile->Release();

}
CoUninitialize();

return 0;

}

For illustration purposes, let’s assume that the header
ends when we find a space.
We create

a stream on the file whose name is passed on the
command line and put it inside a

CRewindStream .
We then read from that stream a byte at a time until we
find that space.

(To prove that we’re really rewinding, we also print
each byte from the header as we

encounter it.)
Once we find the space, we ask the CRewindStream
to create a new stream

5/5

that represents the original stream
rewound back to the beginning.
We pass that stream to

the PrintStream helper
function from last time, to prove that the resulting stream
really is

the entire file contents starting from the beginning.

Notice that we consumed only as much memory as necessary to
remember the parts of the

stream that needed to be replayed.
Even if the file were a megabyte in size, we only need to

remember
the bytes that we read up until we decided that we were finished
reading the

header.

Now, this isn’t the most beautiful implementation of a rewindable
stream, but it was

convenient for expository purposes.
I leave you to make as many prettifications as meet your

aesthetic
requirements.

Exercise: Discuss what would be needed in order to support
rewinding more than once and

the performance consequences thereof.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

