
1/5

March 22, 2007

Excursions in composition: Sequential stream
concatenation

devblogs.microsoft.com/oldnewthing/20070322-00

Raymond Chen

As we’ve seen a few times already
(when
building context menus and exploring
fiber-based

enumeration),
composition is an important concept in object-oriented programming.
Today,

we’re going to compose two sequential streams by concatenation.

There really isn’t much to it.
The idea is to take two streams and start by reading
from the

first one.
When that runs out, switch to reading from the second one.
Most of this is just

typing.
(As usual, I am using plain C++;
in real life, you can save yourselves a lot of typing by

using a class library of your choosing.)

We’ll start with a base class that does all the boring typing
related to implementing a read-

only sequential stream.

https://devblogs.microsoft.com/oldnewthing/20070322-00/?p=27533
http://blogs.msdn.com/oldnewthing/archive/2004/10/07/239197.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/01/04/346274.aspx

2/5

class CROSequentialStreamBase : public ISequentialStream

{

public:

// *** IUnknown ***

STDMETHODIMP QueryInterface(REFIID riid, void **ppv)

{
 if (riid == IID_IUnknown || riid == IID_ISequentialStream) {

 ppv = static_cast<IUnknown>(this);

 AddRef();

 return S_OK;

 }

 *ppv = NULL;

 return E_NOINTERFACE;

}
STDMETHODIMP_(ULONG) AddRef()

{
 return InterlockedIncrement(&m_cRef);

}
STDMETHODIMP_(ULONG) Release()

{
 LONG cRef = InterlockedDecrement(&m_cRef);

 if (cRef == 0) delete this;

 return cRef;

}
// *** ISequentialStream ***

STDMETHODIMP Write(const void *pv, ULONG cb, ULONG *pcbWritten)

{
 if (pcbWritten) *pcbWritten = 0;

 return STG_E_ACCESSDENIED;

}
protected:

CROSequentialStreamBase() : m_cRef(1) { }

virtual ~CROSequentialStreamBase() { }

LONG m_cRef;

};

There’s nothing exciting here at all.
In addition to the boring IUnknown methods,
we also

implement ISequentialStream::Write
by saying, “Sorry, you can’t write to a read-only

stream.”
The ISequentialStream::Read method
is left unimplemented.

We can now cook up our
 CConcatStream class:

3/5

class CConcatStream : public CROSequentialStreamBase

{

public:

CConcatStream(ISequentialStream *pstm1,

 ISequentialStream *pstm2);

// *** ISequentialStream ***

STDMETHODIMP Read(void *pv, ULONG cb, ULONG *pcbRead);

protected:

~CConcatStream();

bool m_fFirst;

ISequentialStream *m_pstm1;

ISequentialStream *m_pstm2;

};
CConcatStream::CConcatStream(ISequentialStream *pstm1,

 ISequentialStream *pstm2)

: m_pstm1(pstm1), m_pstm2(pstm2), m_fFirst(true)

{

assert(pstm1 != pstm2);

m_pstm1->AddRef();

m_pstm2->AddRef();

}

CConcatStream::~CConcatStream()

{

m_pstm1->Release();

m_pstm2->Release();

}

Our CConcatStream takes two sequential streams
and saves them in member variables

m_pstm1 and m_pstm2 .
The real work happens in
 ISequentialStream::Read
method:

HRESULT CConcatStream::Read(void *pv, ULONG cb, ULONG *pcbRead)

{

ULONG cbRead;

HRESULT hr;

if (m_fFirst) {

 hr = m_pstm1->Read(pv, cb, &cbRead);

} else {

 hr = m_pstm2->Read(pv, cb, &cbRead);

}
if ((FAILED(hr) || cbRead == 0) && m_fFirst) {

 m_fFirst = false;

 hr = m_pstm2->Read(pv, cb, &cbRead);

}
if (pcbRead) *pcbRead = cbRead;

return hr;

}

If we are still reading the first stream, then read from the first
stream.
Otherwise, read from

the second stream.
If the first stream reaches the end, then switch to the second stream.

(Checking whether the end of the stream has been reached is very
annoying since

4/5

ISequentialStream
implementations are inconsistent in the way they report
the

condition.
Some return S_FALSE on a
partial read;
others return S_OK ;
still others return

an error code.
We need to check for all of these possibilities.)

And that’s all there is.
If you give this object two sequential streams, it will compose
those

two streams and act like one giant stream that is the
concatenation of the two.

Let’s illustrate with a simple program:

#include <stdio.h>

#include <windows.h>

#include <ole2.h>

#include <assert.h>

#include <shlwapi.h>

#include <tchar.h>

... insert CConcatStream class here ...

void PrintStream(ISequentialStream *pstm)

{

ULONG cb;

BYTE buf[256];

while (SUCCEEDED(pstm->Read(buf, 255, &cb)) && cb) {

 buf[cb] = 0;

 printf("%s", buf);

}
}

int __cdecl _tmain(int argc, TCHAR **argv)

{

if(SUCCEEDED(CoInitialize(NULL)) {

 IStream *pstm1;

 if (SUCCEEDED(SHCreateStreamOnFile(argv[1], STGM_READ, &pstm1))) {

 IStream *pstm2;

 if (SUCCEEDED(SHCreateStreamOnFile(argv[2], STGM_READ, &pstm2))) {

 CConcatStream *pstm = new CConcatStream(pstm1, pstm2);

 if (pstm) {

 PrintStream(pstm);

 pstm->Release();

 }

 pstm2->Release();

 }

 pstm1->Release();

 }

 CoUninitialize();

}
return 0;

}

This program takes two file names on the command line and
creates a stream for each one,

then creates a CConcatStream out of them both,
resulting in a composite stream that

produces the contents of
the first file, followed by the contents of the second file.
When you

run this program, you should see both files printed
to the screen, one after the other.

5/5

Okay, there really wasn’t much going on here,
but we’ll use this as groundwork for next time.

Exercise: What is the significance of the assertion
in the constructor?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

