
1/2

March 8, 2007

The GETDISPINFO notifications tell you what information
they want

devblogs.microsoft.com/oldnewthing/20070308-00

Raymond Chen

The XXN_GETDISPINFO notifications used by the common controls are used when the

control asks its parent to generate information that had been marked as delay-rendered,

either explicitly via values such as LPSTR_TEXTCALLBACK or implicitly by being an owner-

data control, for example.
In fact the control is really just the middle man between the code

that requested information about an item (via a message like LVM_GETITEM) and the code

that generates it (your LVN_GETDISPINFO handler). In other words, the code flow goes like

this:
Somebody interested in retrieving data from a list view creates a LVITEM structure and

initializes the LVITEM.mask and other fields as necessary, based on the mask. (For example,

if the LVIF_TEXT flag is set, then LVITEM.pszText and LVITEM.cchTextMax must also

be set to the buffer and its size.) it then sends a LVM_GETITEM message to the list view

control.
The list view control looks at the LVITEM.mask to see what information needs to be

filled in. Some of the information the list view can provide on its own. Other parts of the

information require help from the list view control’s parent. For example, if the

LVITEM.mask has the LVIF_TEXT flag set, and the item has its text set to

LPSTR_TEXTCALLBACK , then the list view needs to consult its parent to get the text.
The list

view control sends the LVN_GETDISPINFO message to its parent, saying, “Hey, somebody is

looking for information; please provide the information that is requested in the

LVITEM.mask member.”
After the parent handles the message, the results are returned back

to the original caller.
There’s a little bonus step that occurs just before the results are

returned: If the parent set the LVIF_DI_SETITEM flag in the LVITEM.mask , then the

returned values are also saved into the list view control as if you had sent a LVM_SETITEM

message. For example, if you set the LVIF_DI_SETITEM flag in response to a request for

LVIF_TEXT , then the text you return will be saved into the list view item, overwriting the

previous value of LPSTR_TEXTCALLBACK . This is handy if you only want to compute the

result once and let the list view cache the result from the on.
Notice that throughout this

process, the LVITEM.mask controls what information is being requested by the original

caller of the list view as well as what is being requested by the list view of its parent. If you

make the mistake of changing the value of LVITEM.mask (aside from setting the

LVIF_DI_SETITEM flag, as noted in the “bonus step”), then you interfere with this game of

“pass the buck”.
After the parent handles the message, the results are returned back to the

https://devblogs.microsoft.com/oldnewthing/20070308-00/?p=27703
http://groups.google.com/groups?selm=37C3DC97-DFD4-4C62-A6EA-2244F8A91A32@microsoft.com

2/2

original caller. But if you have modified the LVITEM.mask , then the results being returned

back to the caller aren’t the same as the ones the caller requested! For example, if the list

view sees the LVIF_TEXT flag set, then it will copy the string provided by the parent back

into the caller’s buffer. But wait a second, if the parent is the one who set the LVIF_TEXT

flag, that means that the original caller didn’t ask for the text. There is no buffer to copy the

results back into. The list view copies the string to an unintialized pointer, and all sorts of

memory corruption occurs as a result.

Moral of the story: When responding to a XXN_GETDISPINFO notification, respect the

mask . It’s the bookkeeping that specifies what information you’re being asked to provide

(and therefore what information will be copied back to the original caller). If you change this

bookkeeping, the original caller is in for a big surprise. It’s like being the cook in a restaurant

modifying the customer’s order. “Oh, you didn’t want the salad; let me give you the veal

instead.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

