
1/2

February 20, 2007

How is LockWindowUpdate meant to be used?
devblogs.microsoft.com/oldnewthing/20070220-07

Raymond Chen

Now that we know how LockWindowUpdate works, we can look at what it is for.
Actually, the

intended purpose of LockWindowUpdate can be captured in one word: dragging. But we’ll

get to that a little later.
The purpose of LockWindowUpdate is to allow a program to

temporarily take over the responsibility of drawing a window. Of course, in order

to do this, you have to prevent the window procedure (or anybody else) from doing their

normal drawing activities; otherwise, the two pieces of code (the code that normally draws

the window and the code that’s trying to take over) fight for control of the window and you

get an ugly mess since neither knows what the other is doing.
But if you’ve locked the window

for updating, how do you draw to it? You use the DCX_LOCKWINDOWUPDATE flag to the

GetDCEx function. This flag means, “Let me draw to the window even though it is locked for

update.” Only the code that locked the window for update should pass this flag, of course,

since it would otherwise create the conflict that LockWindowUpdate was intended to avoid

in the first place.
Since people like tables so much, I’ve made one that summarizes what

changes when a window is locked for update:

Normal
behavior Window locked for update

BeginPaint , GetDC ,
etc.

Drawing
operations paint
the window

Drawing operations paint nothing, but the
affected area is remembered for future
invalidation

GetDCEx with
DCX_LOCKWINDOWUPDATE

flag

(do not use) Drawing operations paint the window

In other words, when a window is locked for update, the ability to draw to the window is

taken away from the normal DC-acquisition functions (BeginPaint and friends) and given

to GetDC(DCX_LOCKWINDOWUPDATE) . Note that if no window is locked for update, you

should not pass the DCX_LOCKWINDOWUPDATE flag; the purpose of that flag is to indicate “I’m

the guy who called LockWindowUpdate . Let me in!”
It’s sort of the window manager

equivalent of the old comedy routine where you tell the guard, “Nobody is allowed into this

https://devblogs.microsoft.com/oldnewthing/20070220-07/?p=27953
http://blogs.msdn.com/oldnewthing/archive/2007/02/19/1716211.aspx

2/2

room.” And then you come back an hour later and the guard won’t let you in.
“I’m sorry, sir,

but I’m not allowed to let anyone into this room.”
“But I’m the one who told you not to let

anyone into the room.”
“That’s right sir, and I’m following your orders. Nobody is allowed

into the room.”
The mistake was in the initial order to the guard. You should have said,

“Nobody except me is allowed into this room.” And DCX_LOCKWINDOWUPDATE is how you tell

the window manager, “It’s me. Let me in.”
If you go back and look at the way the

LockWindowUpdate function works, you’ll see that if the window that was locked doesn’t try

to draw, then when the window is unlocked, nothing is invalidated. Whereas the

CS_SAVEBITS class style automatically saves the original pixels and restores them when the

window is removed from the screen, the LockWindowUpdate doesn’t do any such thing. It is

your responsibility to ensure that any pixels you changed while the window was locked for

update have been restored to their original values when you call

LockWindowUpdate(NULL) . This is typically done by saving the original pixels into an off-

screen bitmap before you do your custom painting and putting them back when you’re done.

Okay, so here’s the intended usage pattern:

When you want to take over drawing from another window, call LockWindowUpdate

on that window.

Save the pixels from that window that you’re going to overwrite.

Draw your new pixels. (These pixels are often a modification of the original pixels. For

example, you might add the image of an object that is being dragged over that window.)

Repeat as necessary as long as your operation is still in progress. (Doing so may require

you to “back up” more pixels of the screen if the region of the screen you’re modifying is

different from the region you modified originally. You can do this backup/restore

incrementally. For example, instead of accumulating the set of pixels you need to

restore, you can restore all the original pixels, compute the new position of the drag

image, save those new pixels, and draw the new image. That way, you have only one set

of “backup pixels” to deal with.)

When the operation is complete, restore the original pixels and call

LockWindowUpdate(NULL) .

Next time, we’ll look more at that one word “dragging” and how it is closely tied to the whole

concept of LockWindowUpdate .
Even though we’ve only started talking about

LockWindowUpdate , you should already know enough to answer this question.

(Note: The purpose of this series is to describe the way the LockWindowUpdate was

intended to be used, not to discuss whether it was a good design in the first place.)

Raymond Chen

Follow

http://groups.google.com/groups?selm=HeWdnedcqaBJ5n7ZnZ2dnUVZ_sOdnZ2d@comcast.com
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

