
1/2

February 1, 2007

The network interoperability compatibility problem,
second follow-up

devblogs.microsoft.com/oldnewthing/20070201-03

Raymond Chen

I post this entry with great reluctance, because I can feel the heat from the pilot lights of the

flame throwers all the way from here.
The struggle with the network interoperability problem

continued for several months after I brought up the topic. In that time, a significant number

of network attached storage devices were found that did not implement “fast mode” queries

correctly. (Buried in this query are some of them; there are others.) Some of them were

Samba-based whose vendors did not have an upgrade available that fixed the bug. But many

of them used custom implementations of CIFS; consequently, any Samba-specific solutions

would not have helped those devices. (Most of the auto-detection suggestions people

proposed addressed only the Samba scenario. Those non-Samba devices would still not have

worked.) Even worse, most of the devices are low-cost solutions which aren’t firmware-

upgradable or have any vendor support.
Some of the reports came from people running fully-

patched well-known Linux distributions. So much for being in all the new commercially

supported offerings over the next couple months.
Furthermore, those buggy non-Samba

implementations mishandled fast mode queries in different ways. For example, one of them I

was asked to look at didn’t return any error codes at all. It just returned garbage data (most

noticeably, corrupting the file name by deleting the first five characters). How do you detect

that this has happened? If the server reports “I have a file called e.txt“, is Windows

supposed to say, “Oh, I don’t think so. I bet you’re one of those buggy servers that chops off

the first five letters of file names and that you really meant to say (scrunches forehead in

concentration) readme.txt“? What if you really had a file called e.txt? What if the server

said, “This directory has two files, 1.txt and 2.txt“? Is this a buggy server? Maybe the files

are really abcde1.txt and defgh2.txt, or maybe the server wasn’t lying and the files

really are 1.txt and 2.txt.
One device simply crashed if asked to perform a fast mode

query. Another wedged up and had to be reset. “Oh, looks like somebody brought their Vista

laptop from home and plugged it into the corporate network. Our document server crashed

again.”
Given the much broader ways that servers mishandled fast queries, any attempt at

auto-detecting them will necessarily be incomplete and fail to detect broken servers. This is

fundamentally the case for servers which return perfectly formed, but incorrect, data. And

even if the detection were perfect, if it left the server in a crashed or hung state, that wouldn’t

https://devblogs.microsoft.com/oldnewthing/20070201-03/?p=28193
http://blogs.msdn.com/oldnewthing/archive/2006/03/30/564809.aspx
http://windowshelp.microsoft.com/communities/newsgroups/en-us/default.mspx?query=nas&dg=&cat=&lang=en&cr=US&pt=&catlist=D1CBF0BD-E8EE-4D73-8ECC-15AF7EC6783B&dglist=&ptlist=&exp=&sloc=en-us
http://blogs.msdn.com/oldnewthing/archive/2006/03/31/565878.aspx#566308


2/2

be much consolation.
Given this new information, the solution that was settled on was simply

to stop using “fast mode” queries for anything other than local devices. The most popular file

system drivers for local devices (NTFS, FAT, CDFS, UDF) are all under Microsoft’s control

and they have already been tested with fast mode queries.
Such is the sad but all-too-true

cost of interoperability and compatibility.

(To address other minor points: It’s not the case that the Vista developers “knew the [fast

mode query] would break Samba-based devices since late 2005“. The fast mode query was

added, and the incompatibility with Samba wasn’t discovered until March 2006. “Why didn’t

you notify the Samba team?” Because by the time we found the problem, they had already

fixed it.)

Raymond Chen

Follow







http://blogs.msdn.com/oldnewthing/archive/2006/03/31/565878.aspx#566495
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

