
1/3

January 22, 2007

The cost of continuously-visible affordances with
dynamic states

devblogs.microsoft.com/oldnewthing/20070122-05

Raymond Chen

Serge Wautier asks, “Why are the copy/cut/paste buttons not disabled when there’s nothing

to copy/cut/paste?“, noting that the back/forward buttons do disable themselves when

navigation is not possible in that direction.
To get to this question, we’ll first go back in time a

bit to a world without toolbars. In those early days, these dynamic options such as

copy/cut/paste appeared solely on the Edit menu. Since the contents of Edit menu were

visible only when the user clicked on it, the cut/copy/paste options needed to be updated

only when the menu was visible. In other words, during WM_INITMENUPOPUP handling.
This

is also why it is somewhat risky to post WM_COMMAND messages which correspond to a menu

item to a window which is not prepared for it. The only way an end-user can generate that

WM_COMMAND message is by going through the menu: clicking the top-level menu to show the

drop-down menu, then clicking on the menu item itself. Most programs do not maintain the

menu item states when the menu is closed since there’s no point in updating something the

user can’t see. Instead, they do it only in response to the WM_INITMENUPOP message. Lazy

evaluation means that the user doesn’t pay for something until they use it. In this case,

paying for the cost of calculating whether the menu item should be enabled or not.

Depending on the program, calculating whether a menu item should be enabled can turn out

to be rather expensive, so it’s natural to avoid doing it whenever possible. (“I can do nothing

really fast.”)
When toolbars showed up, things got more complicated. Now, the affordances

are visible all the time, right there in the toolbar. How do you update something

continuously without destroying performance?
The navigation buttons disable and enable

themselves dynamically because the conditions that control their state satisfy several handy

criteria.

The program knows when the state has potentially changed. (The program maintains

the navigation history, so it knows that the button states need to be recalculated only

when a navigation occurs.)

Computing the state is relatively cheap. (All the program has to check is whether there

is a previous and next page in the navigation history Since the navigation history is

typically maintained as a list, this is easy to do.)

https://devblogs.microsoft.com/oldnewthing/20070122-05/?p=28323
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#410547

2/3

They change in proportion to user activity within the program. (Each state change can

be tied to a user’s actions. They don’t change on their own.)

They change rarely. (Users do not navigate a hundred times per second.)

Since the program knows when the navigation stack has changed, it doesn’t have to waste its

time updating the button states when nothing has changed. Since recalculating the state is

relatively cheap, the end user will not see the main user interface slow down while the

program goes off to determine the new button state after each navigation. And finally, the

state changes rarely, so that this cheap calculation does not multiply into an expensive one.

The copy/cut/paste buttons, on the other hand, often fail to meet these criteria. First, the

copy and cut options:

The program knows when the state has potentially changed. (Whenever the selection

changes.) — good

Computing the state is not always cheap. (For example, determining whether an item in

Explorer can be cut or copied requires talking to its namespace handler, which can

mean loading a DLL. If the item on the clipboard is a file on the network, you may have

to access a computer halfway around the world.) — often bad

It changes in proportion to user activity within the program. (Each state change can be

traced to the user changing the selection.)

They change with high frequency. (Dragging a rectangle to make a group selection

changes the selection each time the rectangle encloses a new item.) — bad

Paste is even worse.

The program doesn’t know when the state has potentially changed. (The clipboard can

change at any time. Yes, the program could install a clipboard viewer, but that comes

with its own performance problems.) — bad

Computing the state is not cheap. (The program has to open the clipboard, retrieve the

data on it, and see whether it is in a format that can be pasted. If the clipboard contents

are delay-rendered, then the constant probing of the clipboard defeats the purpose of

delay-rendered clipboard data, which is to defer the cost of generating clipboard data

until the user actually wants it. For Explorer, it’s even worse, because it has to take the

data and ask the selected item whether it can accept the paste. Doing this means talking

to the namespace handler, which can mean loading a DLL. And if the file on the

clipboard is on the network, the paste handler may need to open the file to see if it is in

a format that can be pasted.) — bad

It can change out of proportion to user activity. (Any time any other program copies

something to the clipboard, the toolbar has to update itself. Then can happen even

when the user is not using the program that has the toolbar! Imagine if Explorer started

saturating your network because you copied a lot of UNC paths to the clipboard while

editing some text file.) — bad

3/3

The frequency of change is unknown. (The clipboard is a shared resource, and who

knows what other people might be using it for.) — bad

This is one of those balancing acts you have to do when designing a program. How much

performance degredation are you willing to make the user suffer through in order to get a

feature they may never even notice (except possibly in a bad way)?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

