
1/4

January 12, 2007

How do I print the contents of a rich text control?
devblogs.microsoft.com/oldnewthing/20070112-02

Raymond Chen

For some reason, people are really puzzled by rich edit printing.
I’m no expert on printing,

but even I was able to figure it out.
The kernel is the EM_FORMATRANGE message.
Each time

you call it, a little bit more of the rich text control
is printed, and the message returns the

index of the first
unprinted character,
which you can pass back in to print the next chunk.

The rest is just setting up and tearing down.

BOOL PrintRTF(HWND hwnd, HDC hdc)

{

int cxPhysOffset = GetDeviceCaps(hdc, PHYSICALOFFSETX);

int cyPhysOffset = GetDeviceCaps(hdc, PHYSICALOFFSETY);

int cxPhys = GetDeviceCaps(hdc, PHYSICALWIDTH);

int cyPhys = GetDeviceCaps(hdc, PHYSICALHEIGHT);

SendMessage(hwnd, EM_SETTARGETDEVICE, (WPARAM)hdc, cxPhys);

FORMATRANGE fr;

fr.hdc = hdc;

fr.hdcTarget = hdc;

fr.rc.left = cxPhysOffset;

fr.rc.right = cxPhysOffset + cxPhys;

fr.rc.top = cyPhysOffset;

fr.rc.bottom = cyPhysOffset + cyPhys;

SendMessage(hwnd, EM_SETSEL, 0, (LPARAM)-1);

SendMessage(hwnd, EM_EXGETSEL, 0, (LPARAM)&fr.chrg);

BOOL fSuccess = TRUE;

while (fr.chrg.cpMin < fr.chrg.cpMax && fSuccess) {

 fSuccess = StartPage(hdc) > 0;

 if (!fSuccess) break;

 int cpMin = SendMessage(hwnd, EM_FORMATRANGE, TRUE, (LPARAM)&fr);

 if (cpMin <= fr.chrg.cpMin) {

 fSuccess = FALSE;

 break;

 }

 fr.chrg.cpMin = cpMin;

 fSuccess = EndPage(hdc) > 0;

}
SendMessage(hwnd, EM_FORMATRANGE, FALSE, 0);

return fSuccess;

}

https://devblogs.microsoft.com/oldnewthing/20070112-02/?p=28423

2/4

We start by getting the dimensions of the page and
telling the rich edit control what we

intend to render to
by using the EM_SETTARGETDEVICE message.
Next, we need to fill out

our FORMATRANGE ,
which we do by specifying the HDC we are
rendering to, as well as the

paper dimensions.
But what about the character range?
We are lazy and let the rich edit

control take care of it for us:
We select all the text and then ask the rich edit control to
tell us

what we just selected, which comes back in the form
of a CHARRANGE , which is exactly what

we needed.

Next comes the printing loop.
While there is still text to print (and we haven’t encountered
an

error), we start a new page,
ask the rich edit control to render that page,
remember where the

next page should begin,
and end the current page.
There’s a little sanity check in there to

make sure that the
rich edit control made forward progress; if not, then we’ll
end up in an

infinite loop spewing out blank pages!
(I have no idea whether this is theoretically possible,

but I’m
going to protect against it just the same.)

Once the printing loop is complete, we clean up by sending
one last EM_FORMATRANGE

message to tell the
rich edit control that we’re all done and it can discard the
information it

cached.

We can take all the information we’ve learned over the
past few days to make a simple “print

RTF” program.

3/4

int CALLBACK

_tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPTSTR lpCmdLine, int nShowCmd)

{

LoadLibrary(TEXT("riched20.dll"));

HWND hwndRTF = CreateWindow(RICHEDIT_CLASS, NULL,

 ES_MULTILINE | WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT, CW_USEDEFAULT,

 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, 0, 0, 0);

if (hwndRTF) {

 SendMessage(hwndRTF, EM_EXLIMITTEXT, 0, -1);

 if (FillRichEditFromFile(hwndRTF, lpCmdLine)) {

 PRINTDLG pd = { sizeof(pd) };

 pd.Flags = PD_RETURNDC | PD_RETURNDEFAULT;

 if (PrintDlg(&pd)) {

 DOCINFO di = { sizeof(di) };

 di.lpszDocName = TEXT("Sample Printout");

 if (StartDoc(pd.hDC, &di) > 0) {

 if (PrintRTF(hwndRTF, pd.hDC)) {

 EndDoc(pd.hDC);

 } else {

 AbortDoc(pd.hDC);

 }

 }

 GlobalFree(pd.hDevMode);

 GlobalFree(pd.hDevNames);

 DeleteDC(pd.hDC);

 }

 }

 DestroyWindow(hwndRTF);

}
return 0;

}

There’s not really much going on here; it’s all just glue and
necessary typing.

We create a rich edit control and fill it with the file
passed on the command line.
We then ask

the PrintDlg function to give us a
DC to the user’s default printer.
We give the document a

title, start the document, print the rich
text into the document, and then end the document

(or abort it
if something went wrong during printing).
A little cleaning up, and we’re all done.

A tiny program to print an arbitrary RTF document with
no fanfare whatsoever.

See?
It’s not so hard.
Once you find EM_FORMATRANGE the rest is just doing
the obvious.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

