
1/2

January 3, 2007

Wait, but why can I GetProcAddress for
IsDialogMessage?

devblogs.microsoft.com/oldnewthing/20070103-15

Raymond Chen

Okay, so
I explained
that a lot of so-called functions are
really redirecting macros, function-

like macros, intrinsic
functions, and inline functions,
and consequently, GetProcAddress

won’t actually
get anything since the function doesn’t exist in the form of
an exported

function.
But why, then, can you GetProcAddress for
 IsDialogMessage ?

Let’s take a closer look at the exports from user32.dll .
Here’s the relevant excerpt.

 417 1A0 0002C661 IsDialogMessage

 418 1A1 0002C661 IsDialogMessageA

 419 1A2 0001DFBC IsDialogMessageW

Notice that this function is exported three ways.
The last two are the ones you expect,

IsDialogMessageA for ANSI callers and
 IsDialogMessageW for UNICODE callers.
That

first one is the one you didn’t expect:
 IsDialogMessage with no A or W suffix.
But notice

that its entry point address is identical to that
of IsDialogMessageA .
The

IsDialogMessage entry point is just an alias for
 IsDialogMessageA .

This phantom third function is hidden from C and C++ programs
because any attempt to call

IsDialogMessage gets converted to
 IsDialogMessageA or
 IsDialogMessageW due to

the redirection macro:

#ifdef UNICODE

#define IsDialogMessage IsDialogMessageW

#else

#define IsDialogMessage IsDialogMessageA

#endif // !UNICODE

(Of course, you can play fancy games to remove the redirection
macros; I’m just talking about

the non-fancy case.)
If nobody can call the function, then why does it exist?

Because of mistakes made long ago.

https://devblogs.microsoft.com/oldnewthing/20070103-15/?p=28523
http://blogs.msdn.com/oldnewthing/archive/2007/01/02/1399230.aspx

2/2

If you hunt through user32.dll you’ll find a few
other functions that follow a similar

pattern of having
three versions, an A version, a W version, and a phantom
undecorated

version (which is an alias for the A version).
At one point long ago, the function existed only

in an undecorated
version.
This turned out to have been a mistake, since there was a

character set dependency in the parameters (perhaps obvious,
perhaps subtle).
The mistake

was corrected by splitting the function into
the A and W versions you see today, but in order

to maintain
compatibility with older programs that were written before
the mistake was

recognized, the original undecorated function was left
in the export table.

When you don’t have a time machine,
you have to live with your mistakes.

In a sense, these functions are vestigial organs of Win32.

Postscript:
Unfortunately, like your appendix, which can get infected,
these vestigial organs

can create a different sort of infection:
If you are using p/invoke to call these functions and

mistakenly
override the default name declaration with
 ExactSpelling=true , like so:

[DllImport("user32.dll", ExactSpelling=true)]

public static extern

bool IsDialogMessage(IntPtr hWndDlg,

 [In] ref MSG msg);

then you will in fact get the normally-inaccessible undecorated name,
since you specified that

you wanted the exact spelling.
This highlights once again that you need to be alert when

doing interop programming:
You get what you ask for, which might not be what you actually

wanted.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/04/03/567318.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

