
1/2

December 22, 2006

The evolution of version resources – corrupted 32-bit
version resources

devblogs.microsoft.com/oldnewthing/20061222-00

Raymond Chen

Last time we looked at the format of 32-bit version resources,
but I ended with the remark

that what you saw purported to be
the resources of shell32.dll but actually weren’t.

What’s going on here?

The resources I presented last time were what the resources
of shell32.dll should have

been,
but in fact they aren’t.

A common mistake in generating 32-bit resources is to mistreat
the cbData field of the

structure I called a
 VERSIONNODE as a count of characters
rather than a count of bytes if

the type is Unicode text.
Even Microsoft’s own Resource Compiler has fallen into this trap!

For example, consider this VERSIONNODE I presented last time:

0098 4C 00 // cbNode (node ends at 0x0088 + 0x004C = 0x00D40)

009A 2C 00 // cbData

009C 01 00 // wType = 1 (string data)

009E 43 00 6F 00 6D 00 70 00 61 00 6E 00 79 00 4E 00

 61 00 6D 00 65 00 00 00

 // L"CompanyName" + null terminator

00B6 00 00 // padding to restore alignment

00B8 4D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00

 74 00 20 00 43 00 6F 00 72 00 70 00 6F 00 72 00

 61 00 74 00 69 00 6F 00 6E 00 00 00

 // L"Microsoft Corporation" + null terminator

00E4 // no padding needed

In real life, the data take the following form:

0098 4C 00 // cbNode (node ends at 0x0088 + 0x004C = 0x00D40)

009A 16 00 // cchData (!)

009C 01 00 // wType = 1 (string data)

...

These malformed version resources manage to get away without
crashing too horribly

because the standard format of version resources
uses string data only in leaf nodes.

Therefore, the incorrect cbData affects only the
node itself and doesn’t cause the child

https://devblogs.microsoft.com/oldnewthing/20061222-00/?p=28623
http://blogs.msdn.com/oldnewthing/archive/2006/12/21/1340571.aspx

2/2

nodes to be parsed
incorrectly (since there are no child nodes).

Until somebody tries to read, say,
 \StringFileInfo\040904B0\CompanyName\oops .
After

the VerQueryValue function locates
the VERSIONNODE corresponding to CompanyName ,

it tries to locate the first child node and, due to the incorrect
 cbData , ends up

misinterpreting the middle of the
string as if it were the start of a child VERSIONNODE .

Things only go downhill from there.

They’re just lucky that nobody actually asks for that.

But wait, there’s more.
Somebody who calls
the VerQueryValueA function expects to have

the
version string returned as ANSI, so VerQueryValueA
needs to know how many

characters to convert from Unicode to ANSI.
If VerQueryValue trusted the erroneous

cbData
value, then ANSI callers would get only half the data they were expecting.

As a result of this mess, the VerQueryValue function
keeps its eyes open and anticipates

that the version resource it
was given to parse may have been generated by one of these

buggy
version resource compilers and goes to some extra effort to accommodate
those bugs.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

