
1/4

December 14, 2006

Computing listview infotips in the background
devblogs.microsoft.com/oldnewthing/20061214-02

Raymond Chen

When the listview control asks you for an infotip, it sends you
then LVN_GETINFOTIP

notification, and when you return,
the result is displayed as the infotip.
But what if

computing the infotip takes a long time?
You don’t want to stall the UI thread on a long

operation,
after all.
This is where LVM_SETINFOTIP comes in.

If you want to say, “Um, I’m not ready with that infotip yet,”
you do two things:
First, you

return a blank infotip to the listview in response
to LVN_GETINFOTIP ;
this tells the listview

not to display anything.
Then, when you have the infotip, you send the
 LVM_SETINFOTIP

message to say,
“Oh, here’s that infotip you asked for.
If you were still wondering.”
If the user

is still hovering over the item that the infotip was
requested for, the infotip will be displayed.

Otherwise, the infotip will be thrown away (since the user doesn’t
want to see it any more).

Here’s a quick and dirty (and not very good) implementation of
this algorithm, just to

illustrate the point.
Start with the program from last time and make the following
changes:

https://devblogs.microsoft.com/oldnewthing/20061214-02/?p=28713

2/4

// add to top of file

#define UNICODE

#define _UNICODE

class BackgroundInfoTip {

public:

BackgroundInfoTip() { ZeroMemory(&m_sit, sizeof(m_sit)); }

BOOL Start(HWND hwnd, NMLVGETINFOTIP *pit)

{
 m_hwnd = hwnd;

 m_sit.cbSize = sizeof(m_sit);

 m_sit.dwFlags = 0;

 m_sit.iItem = pit->iItem;

 m_sit.iSubItem = pit->iSubItem;

 if ((pit->dwFlags & LVGIT_UNFOLDED) ||

 (m_pszPrefix = StrDup(pit->pszText)) != NULL) {

 return QueueUserWorkItem(s_Work, this, WT_EXECUTELONGFUNCTION);

 }

 return FALSE;

}
~BackgroundInfoTip() {

 LocalFree(m_pszPrefix);

 CoTaskMemFree(m_sit.pszText);

}
static DWORD CALLBACK s_Work(void *lpParameter);

void Work();

HWND m_hwnd;

LVSETINFOTIP m_sit;

LPTSTR m_pszPrefix;

};
void BackgroundInfoTip::Work()

{

Sleep(3000); // artificial delay

TCHAR szInfotip[INFOTIPSIZE];

if (m_pszPrefix) {

 StringCchCopy(szInfotip, INFOTIPSIZE, m_pszPrefix);

 StringCchCat(szInfotip, INFOTIPSIZE, TEXT("\r\n"));

} else {

 szInfotip[0] = TEXT('\0');

}
StringCchCat(szInfotip, INFOTIPSIZE, TEXT("Here is an infotip"));

if (SUCCEEDED(SHStrDup(szInfotip, &m_sit.pszText)) &&

 PostMessage(m_hwnd, WM_APP, 0, (LPARAM)this)) {

 // ownership transferred to main window

} else {

 delete this;

}
}

DWORD BackgroundInfoTip::s_Work(void *lpParameter)

{

BackgroundInfoTip *self =

 reinterpret_cast<BackgroundInfoTip*>(lpParameter);

self->Work();

3/4

return 0;

}

void OnGetInfoTip(HWND hwnd, NMLVGETINFOTIP *pit)

{

if (!pit->cchTextMax) return;

// note: uses no-throwing "new"

BackgroundInfoTip *pbit = new BackgroundInfoTip();

if (pbit && pbit->Start(hwnd, pit)) {

 pit->pszText[0] = TEXT('\0'); // no tip yet

} else {

 delete pbit;

}
}

void FinishInfoTip(BackgroundInfoTip *pbit)

{

SendMessage(g_hwndChild, LVM_SETINFOTIP, 0, (LPARAM)&pbit->m_sit);

delete pbit;

}

 case WM_APP: FinishInfoTip((BackgroundInfoTip *)lParam); return 0;

We start by defining
UNICODE and _UNICODE
because we’re using the Windows XP common

controls (version 6),
and that version of the common controls supports only Unicode.

(Version 5 of the common controls doesn’t support the
 LVM_SETINFOTIP message.)

Next, let’s skip ahead to the OnGetInfoTip function.
When we are asked to produce an

infotip, we create an instance of
our helper class and get it started.
Once we’re convinced that

the infotip computation is under way,
we return a blank infotip to the listview to tell it,
“Don’t

display anything yet.”

The helper class BackgroundInfoTip
starts by capturing the parameters of the

NMLVGETINFOTIP .
Again, we pay close attention to the LVGIT_UNFOLDED
flag:
If it is not

set, then we save the text currently in the infotip
so we can prepend it to the infotip text.
We

then toss the item onto the thread pool and wait for the
work item to fire.

As before, our infotip computation is artificially simple:
It’s just a hard-coded string.
In real

life you presumably would actually sit down and
compute something.
I stuck in a

Sleep(3000) to create an artificial
delay in order to simulate this “computation time”.

Once we have our answer,
remembering to
prefix the original infotip text if the item was

folded,
we save it in the LVSETINFOTIP
structure and post a message back to our main

thread to say,
“Okay, the infotip is ready.”

On receipt of the WM_APP message
(in a proper program, it would have a more meaningful

name
like WM_INFOTIPREADY), we tell the listview
that we have our infotip, in case it was

still interested.
And since this completes the background infotip calculation,
we can delete

the helper object.

http://blogs.msdn.com/oldnewthing/archive/2004/02/12/71851.aspx

4/4

This is not very good code because it fails to handle some
obvious cases:
If the user moves to

a new listview item, the listview will
ask for a new infotip.
Our code doesn’t attempt to cancel

the previous background infotip;
as a result, if the user waves the mouse over the listview,
we

may end up with a large number of background infotip computations,
all but one of which

will be discarded.
Even worse, all the discarded ones will be ahead of the
important one in

the work item queue:
You’re spending all your time doing something whose result
is going to

be thrown away, and not executing
the work item whose result is actually useful.

The code also doesn’t handle the case where the window is
closed while the background work

items are still running.
Closing the window should cancel the work items or at least
tell them

that they don’t have a main window to talk to any more.

Adding code to handle all these edge cases would have distracted
from the point of this

article, so I leave you to make this code
more solid as an exercise.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

