
1/2

December 11, 2006

What does an invalid handle exception in
LeaveCriticalSection mean?

devblogs.microsoft.com/oldnewthing/20061211-00

Raymond Chen

Internally, a critical section is a bunch of counters and flags,
and possibly an event.
(Note

that the internal structure of a critical section is subject
to change at any time—in fact, it

changed between
Windows XP and Windows 2003.
The information provided here is

therefore intended for troubleshooting
and debugging purposes and not for production use.)

As long as there is no contention, the counters and flags are
sufficient because nobody has

had to wait for the critical section
(and therefore nobody had to be woken up when the

critical section
became available).

If a thread needs to be blocked because the critical section it wants
is already owned by

another thread,
the kernel creates an event for the critical section
(if there isn’t one already)

and waits on it.
When the owner of the critical section finally releases it,
the event is signaled,

thereby alerting all the waiters that the
critical section is now available and they should try to

enter it
again.
(If there is more than one waiter, then only one will actually
enter the critical

section and the others will return to the wait
loop.)

If you get an invalid handle exception in
 LeaveCriticalSection ,
it means that the critical

section code thought that there
were other threads waiting for the critical section to become

available, so it tried to signal the event, but the event handle
was no good.

Now you get to use your brain to come up with reasons why this might be.

One possibility is that the critical section has been corrupted,
and the memory that normally

holds the event handle has been
overwritten with some other value that happens not to be a

valid handle.

Another possibility is that some other piece of code passed
an uninitialized variable to the

CloseHandle
function and ended up closing the critical section’s handle
by mistake.
This

can also happen if some other piece of code has a double-close
bug, and the handle (now

closed) just happened to be reused as the
critical section’s event handle.
When the buggy

code closes the handle the second time by mistake,
it ends up closing the critical section’s

handle instead.

https://devblogs.microsoft.com/oldnewthing/20061211-00/?p=28763

2/2

Of course, the problem might be that the critical section is not
valid because it was never

initialized in the first place.
The values in the fields are just uninitialized garbage,
and when

you try to leave this uninitialized critical section,
that garbage gets used as an event handle,

raising the invalid
handle exception.

Then again, the problem might be that the critical section is
not valid because it has already

been destroyed.
For example, one thread might have code that goes like this:

EnterCriticalSection(&cs);

... do stuff...

LeaveCriticalSection(&cs);

While that thread is busy doing stuff,
another thread calls
 DeleteCriticalSection(&cs) .

This destroys the critical section while another thread
was still using it.
Eventually that

thread finishes doing its stuff and calls
 LeaveCriticalSection ,
which raises the invalid

handle exception because the
 DeleteCriticalSection already closed the handle.

All of these are possible reasons for an invalid handle
exception in LeaveCriticalSection .

To determine which one you’re running into will require more
debugging, but at least now

you know what to be looking for.

Postscript:
One of my colleagues from the kernel team points out that
the Locks and Handles

checks in
Application Verifier are great
for debugging issues like this.

Raymond Chen

Follow

http://www.microsoft.com/technet/prodtechnol/windows/appcompatibility/appverifier.mspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

