
1/2

November 28, 2006

What went wrong in Windows 95 if you use a system
color brush as your background brush?

devblogs.microsoft.com/oldnewthing/20061128-06

Raymond Chen

If you want to register a window class and use a system color
as its background color, you set

the hbrBackground member
to the desired color, plus one, cast to an HBRUSH :

wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);

Windows 95 introduced “system color brushes”,
which are a magic type of brush which

always paint in the
corresponding system color, even if the system color changes.

HBRUSH hbrWindow = GetSysColorBrush(COLOR_WINDOW);

The hbrWindow brush will always paint in the
color corresponding to

GetSysColor(COLOR_WINDOW) ,
even if the user changes the color scheme later.

Now, you might be tempted to use a system color brush as
your class background brush.

After all, if you want the background to be the system window color,
why not use a brush that

is always the system window color?

Well, because the documentation for GetSysColorBrush
explicitly tells you not to do that.

If you tried this on Windows 95, it would have seemed to work
for a while, and then bad

things would start happening.

The system color brushes were added as a convenience to save people
the trouble of having to

create solid color brushes just to draw
a system color.
Profiling in Windows 95 revealed that a

lot of time was
spent by applications creating solid brushes, using them briefly,
and then

destroying them, so anything that could be done to reduce
the rate at which applications

needed to do this was a good thing.

The system color brushes were implemented in Windows 95
by creating them and then

telling GDI, “Hey, if somebody tries
to DeleteObject this brush, don’t let them.”
This

prevented the system color brushes from being accidentally
destroyed.

Except when it didn’t.

https://devblogs.microsoft.com/oldnewthing/20061128-06/?p=28893

2/2

When you registered a window class with a background brush
(and by that, I mean an

honest-to-goodness brush and not a
pseudo-brush you get from that
 (HBRUSH)(COLOR_xxx

+ 1) stuff)
the window manager did the same thing to the brush as it
did to the system color

brushes: It told GDI,
“Hey, if somebody tries
to DeleteObject this brush, don’t let them.”

This prevented people from destroying brushes while the window
manager was still using

them to draw the background of a window.

When you unregistered the window class, the window manager told
GDI, “Okay, delete this

brush, and yes, I told you not to let
anyone DeleteObject it, but I’m overriding it
because I

was the one who protected it in the first place.
I’m just cancelling my previous instructions to

protect this brush.”
The window manager takes responsibility for
destroying the brush when

you register the class;
therefore, when you unregister the class, the window manager
is

obligated to clean up and destroy the brush.
(Actually, it’s a little more complicated than that,

because it is
legal to use one brush as the background brush for multiple
window classes, but

let’s ignore that case for now.)

Do you see the problem yet?

What if you registered a window class with a system color brush
as the background brush and

then unregistered it?
(Don’t forget that classes are automatically unregistered when
the

process exits.)
When you registered the class, the brush got protected,
and when you

unregistered the class, the Windows 95 window manager
told GDI to override the

protection and
destroy the brush anyway.

Oops, we just destroyed a system color brush.
Even though those brushes were protected,
the

protection didn’t work here because you went through the
code path where the window

manager said,
“Override the safety interlocks!”

But of course, you didn’t need to use a system color brush in the
first place.
You should have

used that
 (HBRUSH)(COLOR_xxx + 1) pseudo-brush.

(Note to nitpickers: This story talked about Windows 95.
It does not apply to any other

version of Windows.
The problem may or may not exist in those other versions;
I make no

claims.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

