
1/3

November 21, 2006

What is the process by which the cursor gets set?
devblogs.microsoft.com/oldnewthing/20061121-15

Raymond Chen

Commenter LittleHelper asked,
“Why is the cursor associated with the class and not the

window?”
This question makes the implicit assumption that the cursor is
associated with the

class.
While there is a cursor associated with each window class,
it is the window that decides

what cursor to use.

The cursor-setting process is described in the documentation of the
 WM_SETCURSOR

message:

The DefWindowProc function passes the
 WM_SETCURSOR message to a parent window
before processing.
If the parent window returns TRUE ,
further processing is halted.
Passing
the message to a window’s parent window
gives the parent window control over the cursor’s
setting in a child window.
The DefWindowProc function also uses this message
to set the
cursor to an arrow if it is not in the client area,
or to the registered class cursor if it is in the
client area.

That paragraph pretty much captures the entire cursor-setting process.
all I’m writing from

here on out is just restating those few sentences.

The WM_SETCURSOR goes to the child window beneath
the cursor.
(Obviously it goes to the

child window and not the parent,
because the documentation says that DefWindowProc

forward the message to its parent.
if the message went to the parent originally, then there

would be nobody
to forward the message to!)
At this point, your window procedure can trap

the WM_SETCURSOR
message, set the cursor, and return TRUE .
Thus, the window gets the

first priority on deciding what the cursor is.

If you don’t handle the WM_SETCURSOR message,
then DefWindowProc forwards the

message to the parent,
who in turn gets to decide whether to handle the message or forward

to its parent in turn.
One possibility is that one of the ancestor windows will handle
the

message, set the cursor, and return TRUE .
In that case, the TRUE return value tells

DefWindowProc that the cursor has been set and no more
work needs to be done.

https://devblogs.microsoft.com/oldnewthing/20061121-15/?p=28943

2/3

The other, more likely, possibility is that none of the ancestor
windows cared to set the

cursor.
At each return to DefWindowProc , the cursor will be
set to the class cursor for the

window that contains the cursor.

Here it is in pictures.
Suppose we have three windows, A, B, and C, where A is the top-level

window, B a child, and C a grandchild, and none of them do anything
special in

WM_SETCURSOR .
Suppose further that the mouse is over window C:

SendMessage(hwndC, WM_SETCURSOR, ...)

C's window procedure does nothing special

DefWindowProc(hwndC, WM_SETCURSOR, ...)

 DefWindowProc forwards to parent:

 SendMessage(hwndB, WM_SETCURSOR, ...)

 B's window procedure does nothing special

 DefWindowProc(hwndB, WM_SETCURSOR, ...)

 DefWindowProc forwards to parent:

 SendMessage(hwndA, WM_SETCURSOR, ...)

 A's window procedure does nothing special

 DefWindowProc(hwndA) cannot forward to parent (no parent)

 DefWindowProc(hwndA) sets the cursor to C's class cursor

 DefWindowProc(hwndA) returns FALSE

 A's window procedure returns FALSE

 SendMessage(hwndA, WM_SETCURSOR, ...) returns FALSE

 DefWindowProc(hwndB) sets the cursor to C's class cursor

 DefWindowProc(hwndB) returns FALSE

 B's window procedure returns FALSE

 SendMessage(hwndB, WM_SETCURSOR, ...) returns FALSE

 DefWindowProc(hwndC) sets the cursor to C's class cursor

 DefWindowProc(hwndC) returns FALSE

C's window procedure returns FALSE

SendMessage(hwndC, WM_SETCURSOR, ...) returns FALSE

Observe that the WM_SETCURSOR started at the
bottom (window C), bubbled up to the top

(window A),
and then worked its way back down to window C.
On the way up, it asks each

window if it wants to set the cursor,
and if it makes it all the way to the top with nobody

expressing
an opinion, then on the way down, each window sets the cursor
to C’s class cursor.

Now, of course, any of the windows along the way could have decided,
“I’m setting the

cursor!” and returned TRUE ,
in which case the message processing would have halted

immediately.

So you see, the window really does decide what the cursor is.
Yes, there is a cursor associated

with the class, but it is used
only if the window decides to use it.
If you want to associate a

cursor with the window, you can do it
by handling the WM_SETCURSOR message explicitly

instead of letting DefWindowProc default to the class
cursor.

LittleHelper’s second question:
“Many programs call SetCursor on every WM_MOUSEMOVE .

Is this not recommended?”

3/3

Although there is no rule forbidding you from using
 WM_MOUSEMOVE to set your cursor, it’s

going to lead to some
problems.
First, and much less serious, you won’t be able to participate

in the
 WM_SETCURSOR negotiations since you aren’t doing
your cursor setting there.
But the

real problem is that you’re going to get cursor flicker.
 WM_SETCURSOR will get sent to your

window to
determine the cursor.
Since you didn’t do anything,
it will probably turn into your

class cursor.
And then you get your WM_MOUSEMOVE and set the cursor
again.
Result: Each

time the user moves the mouse, the cursor changes to
the class cursor and then to the final

cursor.

Let’s watch this happen. Start with the
scratch program
and make these changes:

void

OnMouseMove(HWND hwnd, int x, int y, UINT keyFlags)

{

Sleep(10); // just to make the flicker more noticeable

SetCursor(LoadCursor(NULL, IDC_CROSS));

}

// Add to WndProc

HANDLE_MSG(hwnd, WM_MOUSEMOVE, OnMouseMove);

Run the program and move the mouse over the client area.
Notice that it flickers between an

arrow (the class cursor,
set during WM_SETCURSOR)
and the crosshairs
(set during

WM_MOUSEMOVE).

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

