
1/2

November 17, 2006

The window manager moves the mouse; applications
choose the cursor

devblogs.microsoft.com/oldnewthing/20061117-03

Raymond Chen

You can sometimes narrow down the source of a problem just by looking at the screen and

moving the mouse.
When you move the mouse, the cursor on the screen moves to match.

This work is done in the window manager in kernel mode. The mouse hardware notifies the

window manager, “Hey, I moved left twenty units.” The window manager takes this value,

accelerates or decelerates it according to your mouse acceleration settings, calls any low-level

mouse hooks that are installed, and then tells the display driver, “Move that sprite left about

thirty pixels” (say). It then sets the “the mouse moved” flag so that the program who owns the

window under the new mouse position will get a WM_MOUSEMOVE message. The window

manager also sets the cursor to the “virtual cursor state” corresponding to the window

beneath the cursor. The “virtual cursor state” remembers the cursor that the thread (or

threads, if input has been attached) responsible for the window most recently set.

Maintaining the virtual cursor state is important, for if a thread calls SetCursor to change

the cursor to an hourglass and then stops processing messages (because it is busy), you really

want the cursor to change back to an hourglass when it moves over the thread’s windows.

What does it mean if the cursor doesn’t move at all when you move the mouse? Could it be

caused by an application? If you read through the flowchart I described above, the only place

applications get involved in the “move the mouse cursor” code flow is if they are filtering out

the mouse motion in a low-level mouse hook. (Another way an application can “lock up” the

mouse is by calling the ClipCursor function, but vanishingly few applications do this. I’m

assuming you aren’t the victim of malicious software but instead are trying to figure out what

program, if any, is accidentally freezing the mouse.)
Low-level mouse hooks are

comparatively uncommon since they exact a high performance penalty on the system. If

you’re moving your mouse and don’t see the cursor move around on the screen, my guess is

that there is a problem in the kernel-mode side of the equation. If you’re seeing the entire

system freeze up, then it’s probably a device driver that has started acting up and held a lock

for too long.
A flaky hard drive can have the same effect. If the window manager itself takes a

page fault, it has to wait for the hard drive to page in the data. and if the window manager

happened to be holding a lock when this happened, that lock is held across the entire I/O

operation. If your hard drive is flaky and, say, takes ten seconds to produce a sector of data

https://devblogs.microsoft.com/oldnewthing/20061117-03/?p=28973
http://blogs.msdn.com/oldnewthing/archive/2003/10/01/55108.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/06/27/432303.aspx#433193

2/2

instead of several milliseconds, then it will look like the system has frozen for ten seconds,

since the window manager is stuck waiting on your disk, which is in turn grunting and

recalibrating in a desperate attempt to produce the data the memory manager requested.

In other words: If the cursor won’t move, it’s likely a driver or hardware problem. (Figuring

out which driver/hardware will require hooking up a kernel debugger and poking around.

Not for the faint of heart.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

